×
13.01.2017
217.015.8e93

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ТРАНСПОРТНОЙ КОСМИЧЕСКОЙ СИСТЕМОЙ

Вид РИД

Изобретение

№ охранного документа
0002605463
Дата охранного документа
20.12.2016
Аннотация: Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L или L системы Земля - Луна). Способ включает отстыковку ТКК от околопланетной ОС, его выведение на опорную орбиту модуля разгонных блоков (РБ), сближение и стыковку ТКК с модулем РБ. Затем к образовавшейся связке прикладывают импульсы для перелета к удалённой ОС. Для осуществления обратного перелета к ТКК прикладывают отлетный импульс и затем осуществляют несколько последовательных пролетов в атмосфере планеты для гашения скорости ТКК до круговой на орбите околопланетной ОС. После этого ТКК стыкуется с данной ОС. Техническим результатом изобретения является возможность создания в кратчайшие сроки и с небольшими расходами на ее разработку транспортной системы между околоземной ОС и удалённой ОС. 4 ил.

Предлагаемый способ управления может быть использован в космической технике при организации перелетов транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, например МКС, а другая находится на орбите других небесных тел, например Луны.

Известен способ управления, выбранный в качестве аналога, в котором используется межорбитальный буксир (МБ), находящийся в составе околоземной ОС. С земного космодрома стартует ракета-носитель (РН) и выводит на опорную орбиту грузовой контейнер (ГК), несущий полезную нагрузку. МБ расстыковывается от ОС и переходит на орбиту ГК. После стыковки с ГК МБ выполняет обратный перелет к ОС. В качестве МБ рассматривался многофункциональный многоразовый межорбитальный буксир «Паром» [1. «РКК «Энергия»: Концепция развития российской пилотируемой космонавтики», ж. Новости Космонавтики №7, 2006, с. 16-13].

Основным недостатком такого способа управления является то, что эта система предназначена для доставки полезного груза в узком околоземном слое от опорной орбиты выведения до орбиты ОС и не может быть использована для перелетов между космическими станциями, находящимися на удаленных орбитах.

Известен способ управления транспортной космической системой, выбранный в качестве прототипа, включающий приложение к транспортному космическому кораблю после его отстыковки от орбитальной станции, находящейся на круговой орбите высотой НОС вокруг планеты с атмосферой, заданных импульсов для его перелета в заданную точку космического пространства и последующего обратного перелета к орбитальной станции. Такой способ управления был использован в 1986 году во время перелетов КК «Союз-Т15» между ОС «Мир» и ОС «Салют-7 [2. В.Е. Гудилин, Л.И. Слабкий «Ракетно-космические системы (История. Развитие. Перспективы)». М., 1996].

Недостатком этого способа является то, что из-за ограниченных энергетических возможностей КК перелет был возможен только при условии нахождения обеих ОС на близких по высоте орбитах.

Техническим результатом изобретения является возможность перелетов между ОС, находящейся на орбите планеты с атмосферой, и ОС, расположенной на орбите другого небесного тела или, например на галоорбитах в окрестностях точек либрации (Лагранжа).

Технический результат достигается благодаря тому, что в способе управления транспортной космической системой, включающем приложение к транспортному космическому кораблю после его отстыковки от орбитальной станции, находящейся на круговой орбите высотой НОС вокруг планеты с атмосферой, заданных импульсов для его перелета в заданную точку космического пространства и последующего обратного перелета к орбитальной станции, отличающемся тем, что перед приложением K1 заданных импульсов производят приложение к транспортному космическому кораблю импульсов сближения для последующей стыковки с модулем разгонных блоков, находящимся на опорной орбите планеты, отдельной ракетой-носителем, после чего к образованной в результате стыковки связке прикладывают К2 заданных импульсов, где К2=1, 2…, при этом K1=K2+1, К2+2…, с последовательным отделением каждого разгонного блока от упомянутой связки по мере выработки его топлива, а при обратном перелете к упомянутой связке прикладывают отлетный импульс Vотл для прохождения на заданном расстоянии от планеты с последующим выходом транспортного космического корабля за счет аэродинамического торможения на эллиптическую орбиту вокруг планеты, выполняют заданные изменения параметров орбиты транспортного космического корабля в процессе его последовательных прохождений на заданном расстоянии от планеты, для чего после каждого прохождения апогея орбиты прикладывают корректирующий импульс Vкор, вплоть до выполнения условия НαОС, где Нα - высота апогея орбиты транспортного космического корабля, после чего в апогее орбиты прикладывают импульс перехода Vпер на круговую орбиту НОС.

Предлагаемый способ рассмотрим на примере ОС, находящейся на околоземной орбите. Технический результат в предлагаемом способе управления достигается за счет того, что отдельной ракетой-носителем (РН) на околоземную орбиту выводится модуль с разгонными блоками (РБ), способными выполнить импульсы перевода полезной нагрузки в заданную точку космического пространства, например на орбиты других небесных тел. ТКК, находящийся в составе околоземной ОС, расстыковывается с ОС, а затем сближается и стыкуется с модулем с РБ, образовывая связку. Используя энергетические возможности модуля с РБ, к связке прикладывается отлетный импульс для ее перевода на траекторию перелета, например, к другой ОС. РБ по мере выработки в них топлива отделяются от образованной связки. По достижении орбиты другой ОС выполняется тормозной импульс, связка переходит на орбиту ОС и стыкуется с ней. Для обратного перелета ТКК к околоземной ОС выполняется отлетный импульс Vотл. При этом обратный перелет осуществляется не на орбиту околоземной ОС, а на орбиту, проходящую на заданном расстоянии от Земли. Такой подход выбран из следующих соображений. На подлете к Земле скорость ТКК соответствует 2-й космической скорости, т.е. около 11.2 км/сек, а круговая скорость на околоземной орбите соответствует 1-й космической скорости, т.е. около 8 км/сек. Таким образом, для перехода на круговую орбиту ОС необходим тормозной импульс величиной около 3.2 км/сек. Для выполнения этого импульса, сопоставимого по величине с отлетным импульсом, очевидно потребуется очень большой модуль с РБ, выводимый сверхтяжелой РН. Соответственно, такая транспортная система будет иметь слишком большую размерность и будет малоэффективна. Чтобы снизить скорость ТКК для перехода на орбиту околоземной ОС без выполнения тормозного импульса, предлагается использовать последовательные прохождения ТКК в атмосфере Земли на заданном расстоянии от Земли. Отлетный импульс Vотл обеспечивает прохождение на заданном расстоянии от Земли с последующим выходом транспортного космического корабля за счет аэродинамического торможения на эллиптическую орбиту вокруг Земли. Помимо этого, при первом пролете вокруг Земли, за счет гравитационного маневра можно скорректировать и другие параметры орбиты ТКК, например положение и наклонение плоскости орбиты для обеспечения оптимальных условий при последующем сближении и стыковке ТКК с околоземной ОС. В апогее образованной эллиптической орбиты Нα выполняется корректирующий импульс Vкор, регулирующий высоту перигея орбиты для необходимого снижения орбитальной скорости при очередном прохождении атмосферы Земли. Предполагается, что в зависимости от возможностей теплозащитного покрытия (ТЗП) ТКК высота перигея орбиты ТКК составит 80-90 км. Описанная последовательность прохождений с выполнением корректирующего импульса в апогее орбиты выполняется до тех пор, пока после очередного прохождения атмосферы Земли высота апогея орбиты не достигнет высоты орбиты ОС, т.е. НαОС. После этого в апогее орбиты выполняется импульс Vпер, обеспечивающий подъем перигея орбиты до высоты НОС, т.е. ТКК переходит на орбиту ОС.

Сущность изобретения поясняется фиг. 1÷4, где:

на фиг. 1 показана схема полета аналога - транспортной системы «Паром»,

на фиг. 2 приведена схема полета прототипа - перелета между двумя ОС,

на фиг. 3 поясняется схема полета предлагаемой транспортной системы,

на фиг. 4 представлена схема с последовательными прохождениями на заданном расстоянии от Земли и последующим выходом на орбиту ОС.

На фиг. 1 показана схема доставки грузового контейнера (ГК) на орбитальную станцию (ОС) с использованием межорбитального буксира (МБ). После выведения с помощью РН (1) на опорную орбиту ГК (2) от ОС (3) отстыковывается МБ (4), который переводится на орбиту ГК. Затем после стыковки МБ и ГК образованная связка переводится на орбиту ОС для последующей его стыковки с ОС.

На фиг. 2 представлена схема перелетов между двумя ОС, находящимися на близкой околоземной орбите. От первой ОС (3) расстыковывается КК (4) и переходит на более низкую орбиту для перелета ко второй ОС (5). При обратном перелете КК к первой ОС переходит на более высокую орбиту.

На фиг. 3 представлена схема предлагаемой транспортной космической системы. Вначале с помощью РН (1) на опорную орбиту выводится модуль с разгонными блоками РБ1 (6) и РБ2 (7). Затем от ОС (3) отстыковывается ТКК (4) и переходит на орбиту модуля с РБ. После стыковки ТКК с модулем с РБ образованная связка с помощью РБ1 выполняет отлетный импульс для перевода на траекторию полета к лунной орбитальной станции (ЛОС) (5). По мере выработки топлива РБ1 отделяется от связки и доработку отлетного импульса выполняет РБ2. Затем оставшаяся связка стыкуется с ЛОС. По завершении совместного полета связка отстыковывается от ЛОС и с помощью РБ2 выполняется отлетный импульс Vотл для обратного перелета ТКК к Земле. После выполнения отлетного импульса РБ2 отделяется от ТКК. После торможения в атмосфере Земли ТКК переходит на орбиту околоземной ОС и стыкуется с ней.

На фиг. 4 представлена схема перехода ТКК (4) за счет последовательных прохождений в атмосфере Земли (8) на орбиту околоземной ОС (3). ТКК входит в атмосферу Земли со 2-й космической скоростью. После первого торможения ТКК в атмосфере он переходит на эллиптическую орбиту и в апогее этой орбиты выполняется корректирующий импульс Vкор (9) для регулирования последующей высоты прохождения ТКК в атмосфере Земли. Последовательные прохождения атмосферы с последующим выполнением корректирующих импульсов Vкор проводятся до тех пор, пока очередной апогей орбиты не достигнет высоты орбиты орбитальной станции НОС. После чего в апогее орбиты выполняется импульс Vпер (10) для окончательного перевода ТКК на орбиту околоземной ОС с последующей с ней стыковкой.

Эффективность предлагаемого способа управления транспортной системой показана по сравнению с разрабатываемой в настоящее время перспективной пилотируемой транспортной системой [3. «Перспективный транспортный корабль нового поколения», ж. Новости Космонавтики №9, 2014, с. 58-61] для выполнения полетов на окололунную орбиту или в точки либрации L1 или L2 системы Земля - Луна.

ППТС состоит из разрабатываемого пилотируемого транспортного корабля нового поколения (ПТК НП) массой около 21 т. Для выполнения перелета к ЛОС необходимо дополнительно разработать сверхтяжелую РН с выводимой полезной нагрузкой массой 85÷90 т. Полезную нагрузку РН составляют ПТК НП и модуль с РБ, обеспечивающий отлетный и тормозной импульсы при перелете к ЛОС. После отстыковки от ЛОС ПТК НП выполняет отлетный импульс для перелета к Земле, а перед входом в атмосферу Земли разделяется на двигательный отсек (ДО) и возвращаемый аппарат (ВА). Затем ВА массой 8.5 т выполняет мягкую посадку в заданном районе Земли. Для этого ВА должен иметь средства посадки (система управления спуском, парашютная система, двигатели мягкой посадки, посадочные опоры и т.д.), общей массой около 21% от массы спускаемого аппарата (СА) [4. Антонова Н.П., Брюханов Н.А., Четкин С.В. «Средства посадки пилотируемого транспортного корабля нового поколения», ж. Космическая техника и технология, 4(7) 2014, с. 21-30]. С учетом ТЗП, обеспечивающего безопасность ВА при торможении в атмосфере со 2-й космической скоростью (11.2 км/сек), полная масса средств мягкой посадки, позволяющей многоразовое использование ВА, составит около 35-40% от массы ВА. Оставшаяся масса ВА, обеспечивающая габариты для жизнедеятельности экипажа при перелетах к Луне и обратно, составляет около 5.5 т. При этом многоразовость ПТК НП частичная, т.к. ДО сгорает в атмосфере.

В предлагаемой транспортной системе рассматриваются в основном уже разработанные элементы. Так, для выведения модуля с РБ достаточно использовать РН «Ангара-А5» [5. «Первый полет тяжелой «Ангары»», ж. Новости Космонавтики №2(385) 2015, с. 1-8]. Экипаж доставляется на околоземную ОС на кораблях «Союз-ТМА», выводимых с помощью РН «Союз-ФГ». Из средств безопасности необходимо будет предусмотреть только ТЗП, защищающее ТКК во время прохождений атмосферы Земли при снижении его скорости со 2-й космической до 1-й космической. Так как потребное снижение скорости ТКК~3.2 км/сек, осуществляемое за несколько прохождений (4÷5) в атмосфере Земли, т.е. на ~0.6÷0.8 км/сек за одно прохождение, то это потребует значительно меньшую массу ТЗП по сравнению с массой ТЗП ВА ПТК НП. После проведения перелета к ЛОС и обратно к околоземной ОС, а также дозаправки топливом с помощью грузовых кораблей «Прогресс-М» ТКК способен выполнить очередной перелет. Таким образом, в этой транспортной космической системе ТКК является полностью многоразовым элементом.

Рассмотрим пример. Пусть модуль состоит из двух РБ общей массой 28 т, что соответствует размерности РН «Ангара-5» при старте с к. Восточный [5]. Допустим РБ1 имеет сухую массу mСУХ=3 т, массу топлива mТ=18.5 т и удельный импульс Руд=375 сек, а РБ2 имеет mСУХ=1 т, mТ=5.5 т и Руд=330 сек. Пусть космическая транспортная система выполняет маршрут ОС - ЛОС - ОС. Потребная характеристическая скорость на выполнение этого маршрута: VΣ=V1+V2+Vотл=5000 м/сек, где V1 - отлетный импульс к Луне (3200 м/сек), V2 - тормозный импульс у Луны (900 м/сек) и Vотл - отлетный импульс от Луны (900 м/сек) [6. «Основы теории полета космических аппаратов» под ред. Г.С. Нариманова. М., Машиностроение, 1972]. Представленный модуль с двумя РБ обеспечивает эту потребную скорость для ТКК массой 5 т.

Если же ЛОС расположена в окрестности точки либрации L2, а перелет в эту точку и обратно осуществляется с использованием гравитационного маневра у Луны, то V1=V2=375 м/сек, и потребная характеристическая скорость на выполнение этого маршрута составит: VΣ=V1+V2+Vотл=3950 м/сек. Представленный модуль с двумя РБ обеспечивает эту потребную скорость для ТКК массой 9 т. Такая масса с учетом отсутствия необходимости иметь средства мягкой посадки позволяет создать более комфортные условия для экипажа ТКК, чем у ВА ПТК НП.

Ограничением любой транспортной космической системы является скважность проведения перелетов. В случае перелетов между околоземной ОС и ЛОС для оптимального решения задачи необходимы коллинеарность плоскостей орбит обеих ОС и принадлежность к этим плоскостям линии Луна - Земля. Расчеты показывают, что в случае использования ЛОС с наклонением орбиты i=90° скважность перелетов составляет 15÷25 суток. В случае нахождения ОС в окрестности точки либрации, например L1 или L2, перелет к Земле возможен в любое время, т.к. ТКК по определению постоянно находится на линии Луна - Земля, но оптимальный перелет возможен только в случае если линия Луна - Земля принадлежит и плоскости орбиты околоземной ОС. Т.к. плоскость орбиты околоземной ОС с наклонением i=51.6° и высотой 400 км, например как у МКС, прецессирует в инерциальном пространстве вследствие нецентральности поля тяготения Земли со скоростью около 5° в сутки [6], то возможность для оптимальных перелетов будет появляться через 180/5=36 суток.

В целом, можно сделать вывод, что предлагаемый способ управления с размещением в составе околоземной ОС специального ТКК для перелетов в удаленную точку космического пространства и обратно позволит создать транспортную космическую систему в кратчайшие сроки и существенно меньшими расходами на ее разработку, производство и отработку.

Способ управления транспортной космической системой, включающий приложение к транспортному космическому кораблю после его отстыковки от орбитальной станции, находящейся на круговой орбите высотой Н вокруг планеты с атмосферой, заданных импульсов для его перелета в заданную точку космического пространства и последующего обратного перелета к орбитальной станции, отличающийся тем, что перед приложением К заданных импульсов производят приложение к транспортному космическому кораблю импульсов сближения для последующей стыковки с модулем разгонных блоков, находящимся на опорной орбите планеты, после чего к образованной в результате стыковки связке прикладывают К заданных импульсов, где К=1, 2…, при этом К=Κ+1, К+2…, с последовательным отделением каждого разгонного блока от упомянутой связки по мере выработки его топлива, а при обратном перелете к упомянутой связке прикладывают отлетный импульс V для прохождения на заданном расстоянии от планеты с последующим выходом транспортного космического корабля за счет аэродинамического торможения на эллиптическую орбиту вокруг планеты, выполняют заданные изменения параметров орбиты транспортного космического корабля в процессе его последовательных прохождений на заданном расстоянии от планеты, для чего после каждого прохождения апогея орбиты прикладывают корректирующий импульс V, вплоть до выполнения условия Н=Н, где Н - высота апогея орбиты транспортного космического корабля, после чего в апогее орбиты прикладывают импульс перехода V на круговую орбиту Н.
СПОСОБ УПРАВЛЕНИЯ ТРАНСПОРТНОЙ КОСМИЧЕСКОЙ СИСТЕМОЙ
СПОСОБ УПРАВЛЕНИЯ ТРАНСПОРТНОЙ КОСМИЧЕСКОЙ СИСТЕМОЙ
Источник поступления информации: Роспатент

Showing 131-140 of 370 items.
10.04.2015
№216.013.4017

Способ определения альбедо земной поверхности

Изобретение относится к космической технике. Способ определения альбедо земной поверхности включает развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной...
Тип: Изобретение
Номер охранного документа: 0002547895
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41b2

Система терморегулирования стыковочного модуля обитаемой орбитальной станции

Изобретение предназначено для терморегулирования модулей долговременных орбитальных станций. Система терморегулирования содержит средства теплопереноса, электронагреватели со средствами управления и датчиковую аппаратуру на внутренней поверхности корпуса модуля. Средствами теплопереноса служат...
Тип: Изобретение
Номер охранного документа: 0002548316
Дата охранного документа: 20.04.2015
20.05.2015
№216.013.4dad

Способ определения герметичности изделий, работающих под внешним давлением

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения герметичности работающих под внешним давлением изделий, в частности изделий космической техники. Сущность: вакуумируют внутреннюю полость изделия через испытательную систему до...
Тип: Изобретение
Номер охранного документа: 0002551399
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4ddc

Быстроразъемный агрегат

Изобретение относится к устройствам, обеспечивающим подачу рабочих тел высокого давления к ракетным блокам на стартовых устройствах и разделение пневмомагистралей. Быстроразъемный агрегат включает бортовую и наземную колодки с заправочными штуцерами, основной цанговый замок, пневмопривод с...
Тип: Изобретение
Номер охранного документа: 0002551450
Дата охранного документа: 27.05.2015
27.06.2015
№216.013.5a79

Двигатель с замкнутым дрейфом электронов

Предлагаемое изобретение относится к области электроракетных двигателей. В двигателе с замкнутым дрейфом электронов, содержащем электромагнит, магнитопровод с полюсами, анод и катод-нейтрализатор, жестко связанные с магнитопроводом, и расположенную внутри него кольцевую разрядную камеру,...
Тип: Изобретение
Номер охранного документа: 0002554702
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b27

Способ эксплуатации твердополимерного электролизера

Изобретение относится к способу эксплуатации твердополимерного электролизера, включающему подачу в него постоянного напряжения питания и воды, нагрев твердополимерного электролизера и воды до температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза,...
Тип: Изобретение
Номер охранного документа: 0002554876
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5f25

Ракетно-космическая система

Изобретение относится к ракетно-космической технике и может быть использовано в последних ступенях ракет-носителей. Ракетно-космическая система (РКС) содержит ракету-носитель с последней ступенью с внешним корпусным отсеком с силовым промежуточным опорным шпангоутом с состыкованными между собой...
Тип: Изобретение
Номер охранного документа: 0002555898
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60a6

Способ испытаний на герметичность гидравлической системы терморегулирования космического аппарата, снабженной гидропневматическим компенсатором с ограничительной решеткой жидкостной полости

Изобретение относится к космической технике, а именно к способам испытаний на герметичность гидравлических систем терморегулирования (СТР) космических аппаратов, снабженных гидропневматическими компенсаторами, при их наземной подготовке. Заявленный способ испытаний на герметичность...
Тип: Изобретение
Номер охранного документа: 0002556283
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62e9

Устройство управления электромагнитным исполнительным органом (варианты)

Изобретение относится к области электрической и электронной автоматики и может быть использовано в устройствах коммутации различных электромагнитных исполнительных органов (ЭМИО). Технический результат - снижение уровня помех и уменьшение влияния на быстродействие электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002556868
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.62ea

Устройство транспортировки и прокладки кабелей на внешней поверхности космического объекта космонавтом в скафандре и способ эксплуатации устройства

Изобретение относится к космической технике, в частности к средствам и способам выполнения технологических операций в условиях открытого космоса космонавтом в скафандре, а именно к оборудованию для транспортировки и прокладки кабелей на внешней поверхности космических объектов, например,...
Тип: Изобретение
Номер охранного документа: 0002556869
Дата охранного документа: 20.07.2015
Showing 131-140 of 297 items.
27.03.2015
№216.013.3552

Устройство расстыковки

Изобретение относится к космической технике и может быть использовано при разделении стыковочных агрегатов космических аппаратов. Устройство расстыковки содержит стыковочные шпангоуты с системами замков, стыковочными механизмами, направляющими узлами со штырем с заходным конусом и гнездом с...
Тип: Изобретение
Номер охранного документа: 0002545134
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.38da

Посадочное устройство космического аппарата

Изобретение относится к ракетно-космической технике и может быть использовано в посадочных устройствах (ПУ) космических аппаратов (КА). ПУ КА содержит стойку, состоящую из стакана с внутренним амортизирующим элементом, соединенного с цилиндрическим шарниром и телескопически с подвижным штоком,...
Тип: Изобретение
Номер охранного документа: 0002546042
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.38f5

Дипольная антенна

Изобретение относится к антенной технике, в частности к дипольным антеннам с отражающим экраном с полунаправленной диаграммой направленности, и может быть использовано в технике связи для приема сигналов навигационных систем и для организации приемо-передающего канала с Землей в...
Тип: Изобретение
Номер охранного документа: 0002546069
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3db6

Система контроля скорости космических аппаратов при сближении

Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов (КА), а именно к оптико-электронным системам контроля скорости. Система контроля скорости космических аппаратов при сближении включает расположенные на активном космическом...
Тип: Изобретение
Номер охранного документа: 0002547286
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4012

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (KA), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547890
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4016

Способ определения альбедо земной поверхности

Изобретение относится к измерительной технике и может быть использовано при определении альбедо земной поверхности. Технический результат - расширение функциональных возможностей. Для этого осуществляют развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой...
Тип: Изобретение
Номер охранного документа: 0002547894
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4017

Способ определения альбедо земной поверхности

Изобретение относится к космической технике. Способ определения альбедо земной поверхности включает развороты солнечной батареи (СБ) космического аппарата (КА), движущегося по околокруговой орбите вокруг Земли, измерение значений тока от СБ и определение по ним значения альбедо земной...
Тип: Изобретение
Номер охранного документа: 0002547895
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41b2

Система терморегулирования стыковочного модуля обитаемой орбитальной станции

Изобретение предназначено для терморегулирования модулей долговременных орбитальных станций. Система терморегулирования содержит средства теплопереноса, электронагреватели со средствами управления и датчиковую аппаратуру на внутренней поверхности корпуса модуля. Средствами теплопереноса служат...
Тип: Изобретение
Номер охранного документа: 0002548316
Дата охранного документа: 20.04.2015
20.05.2015
№216.013.4dad

Способ определения герметичности изделий, работающих под внешним давлением

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения герметичности работающих под внешним давлением изделий, в частности изделий космической техники. Сущность: вакуумируют внутреннюю полость изделия через испытательную систему до...
Тип: Изобретение
Номер охранного документа: 0002551399
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4ddc

Быстроразъемный агрегат

Изобретение относится к устройствам, обеспечивающим подачу рабочих тел высокого давления к ракетным блокам на стартовых устройствах и разделение пневмомагистралей. Быстроразъемный агрегат включает бортовую и наземную колодки с заправочными штуцерами, основной цанговый замок, пневмопривод с...
Тип: Изобретение
Номер охранного документа: 0002551450
Дата охранного документа: 27.05.2015
+ добавить свой РИД