×
13.01.2017
217.015.8dfb

Результат интеллектуальной деятельности: КОМБИНИРОВАННЫЙ СПОСОБ ОБРАБОТКИ СПЛАВОВ ВАНАДИЯ

Вид РИД

Изобретение

№ охранного документа
0002605015
Дата охранного документа
20.12.2016
Аннотация: Изобретение относится к обработке ванадиевых сплавов, легированных элементами IVB группы, содержащих элементы замещения Cr, W и элементы внедрения С, О, N в количестве не менее 0,04 мас.%. Способ включает гомогенизирующий отжиг заготовки сплава, многократную термомеханическую обработку, состоящую из пластической деформации и отжига, диффузионное легирование кислородом и заключительный стабилизирующий отжиг при температуре 1000-1100°C. Диффузионное легирование кислородом после многократной термомеханической обработки проводят путем термообработки заготовок на воздухе при температуре не более 700°C, длительность которой устанавливают от 1 минуты и более в зависимости от требуемой концентрации кислорода, элементного и фазового состава обрабатываемой заготовки сплава, а также ее формы и геометрических размеров. Обеспечивается повышение прочности при сохранении запаса пластичности сплавов. 1 табл., 2 ил.

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами IVB группы Периодической системы (Ti, Zr, Hf), другими элементами замещения (Cr, W) и содержащих элементы внедрения (C, O, N) в количестве не менее 0.04 вес.%, используемых в качестве конструкционных материалов в реакторах деления и синтеза, работающих в условиях облучения и повышенных температур, в частности в качестве оболочек тепловыделяющих элементов реакторов на быстрых нейтронах, элементов экспериментального модуля ДЕМО-РФ в реакторе ИТЕР.

Известен способ получения листа сплава V-4Ti-4Cr, включающий прокатку слитка при комнатной температуре со степенью деформации 95% и последующие отжиги в вакууме 10-4 Па при Т=(600-1100) °С в течение 1 часа (A. Nishimura, A. Iwahori, N.J. Heo. T. Nagasaka, T. Muroga, S.-I. Tanaka. Effect of precipitation and solution behavior of impurities on mechanical properties of low activation vanadium alloy //Journal of Nuclear Materials 329-333 (2004) 438-441 (Proceedings of the Eleventh International Conference on Fusion Reactor Materials (ICFRM-11). Kyoto, Japan, December, 2003)).

Известен способ термомеханической обработки сплавов на основе ванадия, легированных элементами IVA группы Периодической системы и содержащих элементы внедрения (C, O, N) в количестве не менее 0.04 вес.%. Заготовки материалов подвергаются отжигу при температуре, превышающей температуру растворимости вторичных фаз, после чего осуществляется многократная термомеханическая обработка с применением метода многократного всестороннего прессования «деформация+отжиг» с заключительным стабилизирующим отжигом при Т=950-1100°С. Суммарная величина истинной логарифмической деформации достигает значений не менее е≥2 (Патент РФ №2360012, МПК C21D 8/00, опубл. 27.06.2009).

Недостатками представленных аналогов является малая объемная доля частиц второй фазы, что приводит к низкой эффективности дисперсного упрочнения, низкая термическая стабильность частиц второй фазы в сочетании с неэффективным в таком случае при повышенных температурах совместным дисперсным и субструктурным упрочнением приводят к снижению температуры рекристаллизации и, как следствие, снижению прочностных свойств.

Наиболее близким по технической сущности решением, выбранным в качестве прототипа, является способ обработки сплавов V-4Ti-4Cr, включающий гомогенизирующий отжиг в вакууме 2×10-5 Torr при Т=1400°С в течение 1 часа, термообработку на воздухе, вакуумный длительный отжиг для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава и термообработку в вакууме при 1400°С в течение 1 часа, обеспечивающую однородное распределение кислорода по толщине образца. После указанных выше операций проводятся 3 цикла термомеханической обработки, состоящие из деформации прокаткой с обжатием ε ≈ 30-50% при комнатной температуре и отжига при T=450÷700°С в течение 1 часа. На заключительном этапе производится ступенчатая термообработка при последовательном повышении температуры с 800 до 1000°С. На каждом шаге время отжига составляет один час (Потапенко М.М., Чернов В.М., Дробышев В.А., Кравцова М.В., Кудрявцева И.Е., Дегтярев Н.А., Овчинников С. В., Тюменцев А.Н., Дитенберг И.А., Пинжин Ю.П., Коротаев А.Д. Микроструктура и механические свойства сплава V-4Ti-4Cr в зависимости от режимов химико-термической обработки. ВАНТ. Сер. Термоядерный синтез, 2014, т. 37, вып. 1, стр.13-17).

Недостатком прототипа является значительная неоднородность распределения упрочняющих частиц и, как следствие, недостаточная жаропрочность обработанного материала.

Задачей настоящего изобретения является разработка способа комбинированной обработки сплавов на основе ванадия, обеспечивающего увеличение объемной доли мелкодисперсной фазы с однородным распределением и повышение эффективности дисперсного упрочнения за счет увеличения в ванадиевых сплавах содержания элементов внедрения, с целью получения более высоких значений прочностных характеристик при высоких температурах.

Поставленная задача решается тем, что применяется комбинированный способ термомеханической и химико-термической обработки ванадиевых сплавов, легированных элементами IVB группы Периодической системы, для повышения их высокотемпературной прочности, включающий гомогенизацию или отжиг сплавов при температуре, превышающей температуру растворимости вторичных фаз, многократную термомеханическую обработку «пластическая деформация+отжиг», диффузионное легирование сплавов кислородом и заключительный стабилизирующий отжиг при температуре 1000-1100°С, но в отличие от прототипа диффузионное легирование проводится после термомеханической обработки. Диффузионное легирование включает в себя термообработку заготовок на воздухе при температуре не более 700°C, при этом, в зависимости от элементного и фазового состава обрабатываемого сплава, требуемой концентрации кислорода, а также формы и геометрических размеров обрабатываемой заготовки, длительность термообработки варьируется от 1 минуты и более.

В частности, заготовки сплава после гомогенизирующего отжига при температуре 1300°С в течение 8 часов, последующего нагрева слитков до температуры 850-1000°C с выдержкой при этой температуре в течение (1,5-2) часов и выдавливания на прессе с коэффициентом вытяжки 2-5 подвергаются отжигу в диапазоне температур 950-1100°С в течение 1 часа и осадке прутков из заготовок на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур 950-1100°С. Далее следует термообработка в вакууме при 1400°С в течение 1 часа. После указанных выше операций проводятся 3 цикла термомеханической обработки, состоящие из деформации прокаткой с обжатием ε ≈ 30-50% при комнатной температуре и отжига при T=450÷700°С в течение 1 часа. Стабилизация структурного состояния проводится отжигом в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при температуре не более 700°C, приводящие к образованию поверхностных окисных пленок V2O5. При этом, в зависимости от элементного и фазового состава обрабатываемого сплава, требуемой концентрации кислорода, а также формы и геометрических размеров обрабатываемой заготовки, длительность термообработки варьируется от 1 минуты и более. После этого проводится вакуумный (2×10-5 Torr) отжиг в интервале 450÷750°С в течение нескольких часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава. На заключительном этапе производится стабилизирующая ступенчатая термообработка при последовательном повышении температуры 1000ºС, 1 час+1100ºС, 1 час.

В результате термомеханической обработки в сплавах ванадия формируется гетерофазное структурное состояние, характеризуемое высокой плотностью дефектов кристаллического строения и формированием мелкодисперсных частиц на основе фаз внедрения. Дополнительное легирование кислородом в процессе химико-термической обработки позволяет сформировать в материале однородное распределение мелкодисперсных частиц оксидной фазы и реализовать эффективное совместное дисперсное и субструктурное упрочнение.

Примеры конкретного осуществления изобретения приведены ниже.

Пример 1

Заготовки сплава V-8,75Cr-1,17Zr после гомогенизирующего отжига при температуре 1300°С в течение 8 часов, последующего нагрева слитков до температуры 1000°C с выдержкой при этой температуре в течение 2 часов и выдавливания на прессе с коэффициентом вытяжки 2-5 подвергаются отжигу в диапазоне температур 950-1100°С в течение 1 часа и осадке прутков из заготовок на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом при 950°С. Далее следует одночасовая термообработка в вакууме при 1400°С и 3 цикла термомеханической обработки, состоящих из деформации прокаткой с обжатием ε ≈ 40% при комнатной температуре и отжига при T=550°С в течение 1 часа. Стабилизация структурного состояния проводится отжигом в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=550°С, 210 минут. После этого проводится вакуумный (2×10-5 Torr) отжиг при 600°С в течение 10 часов. На заключительном этапе производится ступенчатая термообработка при последовательном повышении температуры 1000ºС, 1 час+1100ºС, 1 час.

Пример 2

Заготовки сплава V-4,23Cr-7,56W-1,69Zr после гомогенизирующего отжига при температуре 1300°С в течение 8 часов, последующего нагрева слитков до температуры 1000°C с выдержкой при этой температуре в течение 2 часов и выдавливания на прессе с коэффициентом вытяжки 2-5 подвергаются отжигу в диапазоне температур 1100°С в течение 1 часа и осадке прутков из заготовок на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом при 1100°С. Далее следует термообработка в вакууме при 1400°С в течение 1 часа. После указанных выше операций проводятся 3 цикла термомеханической обработки, состоящие из деформации прокаткой с обжатием ε ≈ 30% при комнатной температуре и отжига при T=700°С в течение 1 часа. Стабилизация структурного состояния проводится отжигом в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=650°С, 840 минут. После этого проводится вакуумный (2×10-5 Torr) отжиг при 650°С в течение 11 часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава. На заключительном этапе производится ступенчатая термообработка при последовательном повышении температуры 1000ºС, 1 час+1100ºС, 1 час.

На рисунке 1, а показан пример микроструктуры V-8,75Cr-1,17Zr после предлагаемой обработки при значении концентрации кислорода CO ≈ 1.1. В результате после заключительного отжига при Т=1100°С частицы ZrO2 имеют размеры (около 200 нм), близкие к таковым для частиц карбида циркония после традиционного режима обработки этого сплава с аналогичной температурой указанного выше отжига. После комбинированной обработки сплава V-Cr-Zr при величине CO ≈2.1 (рисунок 1, б) указанные выше размеры имеют лишь частицы ZrO2, сформировавшиеся в результате окисления частиц исходной карбидной фазы ZrC. Частицы ZrO2, выделившиеся из пересыщенного твердого раствора, на порядок меньше. На расстоянии ≈ 0.2 мм от поверхности внутреннеокисленных образцов толщиной 1 мм размеры большинства таких частиц не превышают 10 нм. Это связано с тем, что, при достигнутых в этом случае величинах CO ≈ 2.1, концентрация циркония в твердом растворе, контролирующая скорость коагуляции этих частиц, снижается на много порядков.

Предельно высокая дисперсность окисной фазы достигается и после комбинированного режима обработки сплава V-4,23Cr-7,56W-1,69Zr (рисунок 2). Как видно на темнопольных изображениях частиц этой фазы (рисунок 2 б), размеры подавляющего большинства этих частиц не превышают нескольких (не более 5) нанометров.

В процессе механических испытаний активным растяжением было установлено, что формирование в процессе обработки по предложенным режимам сложного структурно-фазового состояния приводит к повышению, в зависимости от концентрации кислорода, значений высокотемпературной кратковременной прочности сплава V-4,23Cr-7,56W-1,69Zr (таблица 1) при сохранении хорошего уровня технологической пластичности. Значительные эффекты упрочнения наблюдаются даже после испытаний при температурах более 800°C, что свидетельствует о высокой термической стабильности формируемых структурных состояний.

Таблица 1
Пределы текучести (σ0.1), прочности (σВ) и величины относительного удлинения до разрушения (δ) (средние значения) сплавов систем V-Ti-Cr (прототип) и V-Cr-W-Zr в зависимости от режимов обработки
СO, %ат Температура испытаний
Т=20°С
Температура испытаний
Т=800°С
Температура испытаний
Т=900°С
Температура испытаний
Т=1000°С
σ0,1, МПа σВ, МПа δ, % σ0,1, МПа σВ, МПа δ, % σ0,1, МПа σВ, МПа δ, % σ0,1, МПа σВ, МПа δ, %
Прототип (V-Ti-Cr)
0.12 380 19 250 8
0.15 390 19 266 9
0.27 400 16 292 8
Предлагаемая обработка (V-Cr-W-Zr)
1.1 380 550 21 180 210 20 150 170 16
2.1 660 840 17 310 350 14 270 300 9 210 240 9
Без обработки (V-Cr-W-Zr)
0.06 320 470 22 195 300 20

К преимуществам изобретения следует отнести то, что в результате применения предложенного способа повышаются значения прочностных характеристик при сохранении приемлемого запаса пластичности образцов обрабатываемых сплавов. Формирующиеся в процессе обработки частицы второй фазы характеризуются высокой термической стабильностью. Предлагаемый способ позволяет производить контролируемое изменение концентрации кислорода и, как следствие, объемной доли частиц второй фазы, для обеспечения наиболее эффективной реализации совмещенного дисперсного и субструктурного упрочнения. Кроме того, такая обработка приводит к повышению значений температуры рекристаллизации ванадиевых сплавов до 1200-1300°C, что позволяет сохранять приемлемый уровень прочностных характеристик при температурах, достигающих 1000°C.

Эти результаты свидетельствуют о высокой эффективности разрабатываемого комбинированного способа обработки сплавов ванадия, легированных элементами IVB группы Периодической системы, для повышения высокотемпературной прочности сплавов и существенного расширения интервала их рабочих температур.

Способ обработки ванадиевых сплавов, легированных элементами IVB группы, содержащих элементы замещения Cr, W и элементы внедрения С, О, N в количестве не менее 0,04 мас.%, включающий гомогенизирующий отжиг заготовки сплава, многократную термомеханическую обработку, состоящую из пластической деформации и отжига, диффузионное легирование кислородом и заключительный стабилизирующий отжиг при температуре 1000-1100°C, отличающийся тем, что диффузионное легирование кислородом после многократной термомеханической обработки проводят путем термообработки заготовки на воздухе при температуре не более 700°C, длительность которой устанавливают от 1 минуты и более в зависимости от требуемой концентрации кислорода, элементного и фазового состава обрабатываемой заготовки сплава, а также ее формы и геометрических размеров.
КОМБИНИРОВАННЫЙ СПОСОБ ОБРАБОТКИ СПЛАВОВ ВАНАДИЯ
Источник поступления информации: Роспатент

Showing 91-100 of 248 items.
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.adc8

Способ получения низкомодульных сплавов на основе системы титан-ниобий селективным лазерным сплавлением

1. Способ относится к получению низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением и может найти применение в области аддитивных технологий в медицине в качестве материалов для имплантатов. Предварительно производят механическую активацию порошков титана и...
Тип: Изобретение
Номер охранного документа: 0002612480
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b07c

Способ определения меди(ii) и марганца(ii) индикаторной трубкой при их совместном присутствии в растворах для анализа природных вод

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного...
Тип: Изобретение
Номер охранного документа: 0002613407
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b139

Лазерный газоанализатор

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода...
Тип: Изобретение
Номер охранного документа: 0002613200
Дата охранного документа: 15.03.2017
Showing 91-100 of 148 items.
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.adc8

Способ получения низкомодульных сплавов на основе системы титан-ниобий селективным лазерным сплавлением

1. Способ относится к получению низкомодульного сплава на основе системы титан-ниобий селективным лазерным сплавлением и может найти применение в области аддитивных технологий в медицине в качестве материалов для имплантатов. Предварительно производят механическую активацию порошков титана и...
Тип: Изобретение
Номер охранного документа: 0002612480
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b07c

Способ определения меди(ii) и марганца(ii) индикаторной трубкой при их совместном присутствии в растворах для анализа природных вод

Изобретение может быть использовано для полуколичественного определения марганца(II) и меди(II) в водных растворах, в частности в природных и сточных водах в полевых условиях. Способ включает наполнение стеклянной трубки с внутренним диаметром 0,5 см Na-формой макросетчатого карбоксильного...
Тип: Изобретение
Номер охранного документа: 0002613407
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b139

Лазерный газоанализатор

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода...
Тип: Изобретение
Номер охранного документа: 0002613200
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b428

Способ определения суммы металлов с использованием полиметакрилатной матрицы

Изобретение относится к области аналитической химии и касается способа определения суммарного содержания ионов металлов (Fe, Cd, Co, Zn, Pb, Ni, Cu, Mn). Способ включает приготовление раствора суммы металлов (Fe, Cd, Co, Zn, Pb, Ni, Cu, Mn) с равным содержанием всех металлов, извлечение...
Тип: Изобретение
Номер охранного документа: 0002613762
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b46d

Устройство для получения волокнистых материалов из расплава термопластов

Изобретение относится к производству волокнистых синтетических материалов из термопластичных веществ, включая различные виды бытовых и промышленных отходов. Может быть использовано для получения пористых теплоизоляционных материалов, сорбентов для сбора нефти и нефтепродуктов, фильтрующих и...
Тип: Изобретение
Номер охранного документа: 0002614087
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.baa2

Способ получения материала с антибактериальными свойствами на основе хлопковой ткани, модифицированной наночастицами оксида цинка

Изобретение относится к области получения материалов с антибактериальными свойствами на основе тканей из волокна природного происхождения, содержащих неорганические антибактериальные агенты. В способе получения материала с антибактериальными свойствами хлопковую ткань модифицируют наночастицами...
Тип: Изобретение
Номер охранного документа: 0002615693
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bd09

Способ определения спектрального состава излучения собственных и примесных дефектов в кварцевом сырье

Использование: для предварительной оценки качества кварцевого сырья. Сущность изобретения заключается в том, что выполняют отбор проб кварцевого сырья, прокаливание, получение спектров люминесценции приготовленных проб при рентгеновском возбуждении (спектры рентгенолюминесценции). Прокаливание...
Тип: Изобретение
Номер охранного документа: 0002616227
Дата охранного документа: 13.04.2017
+ добавить свой РИД