×
13.01.2017
217.015.8da5

Результат интеллектуальной деятельности: СПОСОБ ОРГАНИЗАЦИИ ВЫЧИСЛЕНИЙ НА ГРАФИЧЕСКИХ ПРОЦЕССОРАХ ДЛЯ МОДЕЛИРОВАНИЯ ПОМЕХОУСТОЙЧИВОСТИ НИЗКОПЛОТНОСТНЫХ КОДЕКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к автоматизированному проектированию, технике моделирования и проверки кодов и может быть использовано при цифровом моделировании характеристик помехоустойчивых низкоплотностных кодеков в однопроцессорных гетерогенных компьютерных системах малой производительности. Техническим результатом применения способа является увеличение производительности вычислений, производимых в процессе моделирования. Такой результат достигается благодаря тому, что хостовой частью выполняют подготовку и передачу данных GPU части, затем производят предварительную оценку значений производительности вычислений на CPU (T) и GPU (T) в отдельности друг от друга, затем общее число моделируемых точек разбивают в соотношении Q/Z=T/T, после чего часть точек Q моделируют основным потоком вычислений на GPU, синхронизируемых с помощью CPU, и запускают дополнительный поток вычислений на CPU для моделирования части точек Z, по завершении моделирования осуществляют передачу результатов вычислений хостовой части. 2 ил.

Изобретение относится к автоматизированному проектированию, технике моделирования и проверки кодов и может быть использовано при цифровом моделировании характеристик помехоустойчивых низкоплотностных кодеков в однопроцессорных гетерогенных компьютерных системах малой производительности для ускорения производимых вычислений.

Техническим результатом является увеличение производительности вычислений, производимых в процессе моделирования.

Известен способ моделирования, описанный в патенте США «Lithographic simulations using graphical processing units», US 2006/0242618 A1, МПК G06F 17/50, опубл. 26.10.2006. Способ заключается в инициализации хостовой части основным вычислителем - CPU (англ. central processing unit - центральный процессор), инициализации данных дополнительного вычислителя - GPU (англ. graphics processing unit - графический процессор), передачи данных от хостовой части к GPU, запуске вычислений на GPU, синхронизируемых хостовой частью и передаче результатов вычислений от GPU обратно хостовой части.

Недостатком такого подхода является неполное использование доступных вычислительных мощностей CPU.

Наиболее близким по своей технической сущности к заявленному способу является способ, описанный в патенте США «Model implementation on GPU», US 7979814 B1, МПК G06F 17/50, опубл. 12.07.2011. Способ заключается в подготовке и передаче хостовой частью данных GPU части, запуске основного потока для CPU и старте потока вычислений на GPU, передаче результатов вычислений хостовой части по завершении моделирования.

Недостатком способа является неполная загрузка основного вычислителя гетерогенной системы вследствие того, что он реализует лишь инициализацию и сопровождение (синхронизацию) вычислений GPU части. В отношении вычислений в гетерогенных системах низкой производительности, такая схема организации моделирования становится схемой с неполным использованием потенциала гетерогенной системы в условиях, когда выигрыш в скорости вычислений на GPU невелик, а гетерогенная система содержит в качестве основного вычислителя лишь однопроцессорное устройство.

Сущность изобретения

Решаемой технической задачей изобретения является увеличение производительности вычислений, выполняемых в процессе моделирования.

Сущность изобретения поясняется приведенными далее чертежами в отношении моделирования и проверки низкоплотностных кодов (N, J, K), где N - длина кода, J - количество единиц в столбце, а K - количество единиц в строке проверочной матрицы кода. На фиг. 1 представлена архитектура программной реализации предлагаемых решений, содержащая в своем составе: 1 - блок моделирования канала с аддитивным белым гауссовским шумом (АБГШ); 2 - блок инициализирующих процедур; 3 и 4 - блоки условной архитектуры итеративного декодера по итеративному алгоритму распространения доверия; 5 - блок финального декодирования и принятия жестких решений, 6 - блок оценки BER (англ. Bit Error Rate - вероятность битовой ошибки). Блоки 3 и 4 в обоих потоках отвечают за передачу сообщений от проверочных вершин к кодовым и обратно, однако в первом потоке, соответствующем вычислениям на GPU, блоки выполняются параллельно, а в потоке, соответствующем вычислениям на CPU, блоки выполняются последовательно.

Предлагаемый способ увеличения производительности заключается в следующем.

1. Сначала производят предварительную оценку производительности вычислений на CPU и GPU в отдельности друг от друга в соответствии с процедурой, псевдокод которой представлен в листинге 1.

Эмпирически было установлено, что моделирование декодирования 200 000 бит достаточно для приблизительной оценки производительности вычислений на CPU и GPU и при этом не так велико, чтобы загрузить гетерогенную систему на значительное время (более 10 сек). Домножение на коэффициент 1, 2 является поправочным; коэффициент вычислен также эмпирически. Функция ceil(x) в листинге 1 возвращает ближайшее целое к значению х, округленное вверх.

2. Затем осуществляют разбиение задачи в соотношении , причем:

,

где TCPU и TGPU - время, затраченное на расчеты центральным и графическим процессором в процессе выполнения вышеописанной процедуры соответственно. В отношении моделирования низкоплотностных кодеков разделить задачу оказывается возможным по точкам значений SNR, так как обычно их симулируется достаточное количество. Разбиение вычислительной задачи осуществляют следующим образом: Вводят вспомогательный коэффициент

Вычисляют общее число точек моделирования:

Вычисляют границы интервалов моделирования:

Здесь SNRinit - минимальное значение сигнал/шум; SNRfinal - максимальное значение сигнал/шум; SNRincr - величина инкремента значения сигнал/шум.

3. После этого осуществляют организацию многопоточных вычислений, где моделирование части точек - Q производят основным потоком на вспомогательном вычислителе (GPU) с синхронизацией хостовой (CPU) частью, а моделирование части точек Ζ осуществляют дополнительным потоком вычислений на CPU. Основной поток (GPU, синхронизируемый CPU) моделирует точки SNR1: SNRinit≤SNR1≤SNRQ.

Дополнительный поток (CPU) моделирует точки SNR2: SNRZ≤SNR2≤SNRfinal.

Достигаемое повышение производительности подтверждается программно полученными данными вычислений, представленными на фиг. 2 в виде графика временного выигрыша, в зависимости от длины кода, при моделировании в гетерогенной системе посредством открытого стандарта реализации техники GPGPU (англ. General-purpose graphics processing units - вычислений общего назначения на графических процессорах) OpenCL (англ. Open Computing Language - открытый язык вычислений) характеристик группы кодов (N, 3, 6) при 10 точках SNR (англ. signal-to-noise ratio - отношение сигнал/шум).

Таким образом, при малых значениях длины (N=96) выигрыш достигает 80% и снижается до 60% при N=204 и 41% при N=273. Затем наблюдается установившийся участок со средним значением выигрыша 21% при длине кода от N=504 до N=3000. Говоря об актуальности и практической важности полученных результатов, упомянутые выше значения длины кода рекомендованы следующими современными техническими стандартами в области телекоммуникаций: 802.11 - WiFi (беспроводные локальные и городские сети, N:648-1944); 802.16 - Mobile WiMAX (местные и городские беспроводные сети, N:576-2304); 802.22 - WRAN (беспроводные региональные сети, N:384-2304).

Область применимости способа ограничены условием Q<Maxsim. Стоит отметить, что принципиально способ реализуем и в гетерогенных системах с многопроцессорным CPU, с учетом полной загрузки всех ядер CPU.

Патенты

1. Патент США «Lithographic simulations using graphical processing units», US 2006/0242618 A1, МПК G06F 17/50, опубл. 26.10.2006.

2. Патент США «Model implementation on GPU», US 7979814 B1, МПК G06F 17/50, опубл. 12.07.2011.

Способ организации вычислений на графических процессорах для моделирования помехоустойчивых низкоплотностных кодеков, заключающийся в том, что хостовой частью выполняют подготовку и передачу данных GPU части (англ. graphics processing unit - графический процессор), после чего запускают основной поток вычислений на GPU, синхронизируемый CPU (англ. central processing unit - центральный процессор), и по завершении моделирования осуществляют передачу результатов вычислений хостовой части, отличающийся тем, что перед запуском вычислений на графическом процессоре производят предварительную оценку значений производительности вычислений на CPU (T) и GPU (T) в отдельности друг от друга, затем разбивают общее число точек моделирования в соотношении Q/Z=T/T, после чего часть точек Q моделируют в основном потоке вычислений на GPU, синхронизируемых с помощью CPU, который одновременно моделирует часть точек Ζ в дополнительном потоке вычислений.
СПОСОБ ОРГАНИЗАЦИИ ВЫЧИСЛЕНИЙ НА ГРАФИЧЕСКИХ ПРОЦЕССОРАХ ДЛЯ МОДЕЛИРОВАНИЯ ПОМЕХОУСТОЙЧИВОСТИ НИЗКОПЛОТНОСТНЫХ КОДЕКОВ
СПОСОБ ОРГАНИЗАЦИИ ВЫЧИСЛЕНИЙ НА ГРАФИЧЕСКИХ ПРОЦЕССОРАХ ДЛЯ МОДЕЛИРОВАНИЯ ПОМЕХОУСТОЙЧИВОСТИ НИЗКОПЛОТНОСТНЫХ КОДЕКОВ
СПОСОБ ОРГАНИЗАЦИИ ВЫЧИСЛЕНИЙ НА ГРАФИЧЕСКИХ ПРОЦЕССОРАХ ДЛЯ МОДЕЛИРОВАНИЯ ПОМЕХОУСТОЙЧИВОСТИ НИЗКОПЛОТНОСТНЫХ КОДЕКОВ
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
27.05.2014
№216.012.caf6

Плоская антенна вытекающей волны

Изобретение относится к антенной технике. Технический результат - обеспечение симметрии формы и боковых лепестков диаграммы направленности, упрощение конструкции. Плоская антенна вытекающей волны содержит плоский диэлектрический волновод, решетку из параллельных друг другу металлических лент,...
Тип: Изобретение
Номер охранного документа: 0002517724
Дата охранного документа: 27.05.2014
26.08.2017
№217.015.ec10

Цифровой демодулятор сигналов с квадратурной амплитудной манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции многопозиционных сигналов с квадратурной амплитудной манипуляцией (КАМ). Достигаемый технический результат - обеспечение высокоскоростной...
Тип: Изобретение
Номер охранного документа: 0002628427
Дата охранного документа: 16.08.2017
Showing 1-3 of 3 items.
27.05.2014
№216.012.caf6

Плоская антенна вытекающей волны

Изобретение относится к антенной технике. Технический результат - обеспечение симметрии формы и боковых лепестков диаграммы направленности, упрощение конструкции. Плоская антенна вытекающей волны содержит плоский диэлектрический волновод, решетку из параллельных друг другу металлических лент,...
Тип: Изобретение
Номер охранного документа: 0002517724
Дата охранного документа: 27.05.2014
26.08.2017
№217.015.ec10

Цифровой демодулятор сигналов с квадратурной амплитудной манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции многопозиционных сигналов с квадратурной амплитудной манипуляцией (КАМ). Достигаемый технический результат - обеспечение высокоскоростной...
Тип: Изобретение
Номер охранного документа: 0002628427
Дата охранного документа: 16.08.2017
01.03.2019
№219.016.cf79

Плоская антенна с управляемой поляризационной характеристикой

Изобретение относится к антенной технике и может быть использовано в системах радиосвязи, радиолокации и в охранных устройствах и системах, а также в системах приема передач спутникового телевизионного и радиовещания диапазонов СВЧ (сверхвысоких частот) и КВЧ (крайне высоких частот)....
Тип: Изобретение
Номер охранного документа: 0002432650
Дата охранного документа: 27.10.2011
+ добавить свой РИД