×
13.01.2017
217.015.8cf4

Результат интеллектуальной деятельности: СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к азимутальному прицеливанию мобильных пусковых установок (ПУ) ракетно-артиллерийского вооружения сухопутных войск при стрельбе по ненаблюдаемой цели. Техническим результатом предлагаемого изобретения является повышение точности азимутального прицеливания пусковой установки, в т.ч. со сменными транспортно-пусковыми контейнерами (ТПК) с ракетами класса «земля - земля», при минимизации действующих на спутниковый измеритель неблагоприятных воздействий от специфической целевой работы ПУ. Подъемно-поворотную ПУ и спутниковый измеритель располагают на мобильном шасси (МШ) длиной не менее 3 м. Посредством антенн спутникового измерителя формируют базовое направление (БН) в диапазоне углов между продольной осью и диагональю МШ в плане. Одну антенну измерителя устанавливают в передней, а вторую антенну измерителя устанавливают в задней оконечности МШ стационарно либо на раскладной штанге. Производят координатную привязку БН к связанному с МШ неподвижному угломерному лимбу ПУ. Разворот ПУ по направлению стрельбы производят относительно БН, зафиксированного посредством угломерного лимба. 8 з.п. ф-лы, 8 ил.

Изобретение относится к азимутальному прицеливанию мобильных пусковых установок (ПУ) ракетно-артиллерийского вооружения сухопутных войск при стрельбе по ненаблюдаемой цели.

Известны способы азимутального прицеливания ракетно-артиллерийского вооружения сухопутных войск при стрельбе по ненаблюдаемой цели (с закрытых позиций), основанные на угломерной привязке основного направления стрельбы к характерным местным ориентирам (реперам) с применением артиллерийской буссоли - см., например, В.А. Надин, И.А. Скорик, В.М. Шегерян «Артиллерия». М., ДОСААФ, 1972, стр. 252-280, 321; с применением механического прицела, панорамы и коллиматора - см., например, А.Б. Широкорад. «Отечественные минометы и реактивная артиллерия». Минск Харвест, Москва ACT, 2000, стр.368.

Известен способ ориентирования (иначе - грубого прицеливания) орудия (ПУ) с применением жестко базируемой на орудии (ПУ) параллельно линии визирования двухантенной системы спутниковой навигации (измерителя азимута - т.н. спутникового компаса) - см., например, патент РФ №2466343 (ближайший аналог). В предложенном техническом решении установку двухантенной системы измерителя на орудие (ПУ) осуществляют посредством легкосъемного кронштейна и штанги, при этом антенны направляют в верхнюю полусферу, а расчет и индикацию значения азимута производят с частотой не менее 1 Гц - с последующим разворотом ПУ по направлению стрельбы.

Однако предложенный способ ориентирования орудия (ПУ) имеет принципиальные ограничения по точности определения измеренного посредством спутникового компаса азимута и повышенные требования к стойкости крепления антенн, что связано с особенностями базирования измерителя, а именно непосредственно на орудие (ПУ), при неизбежном наличии габаритных, ударных (при выстреле/запуске боеприпаса), конструктивно-компоновочных и других ограничений, определяемых специфической целевой работой орудия (ПУ).

Техническим результатом предлагаемого изобретения является существенное (минимум на порядок) повышение точности азимутального прицеливания пусковой установки, в т.ч. со сменными транспортно-пусковыми контейнерами (ТПК) с ракетами класса «земля - земля», при минимизации действующих на спутниковый компас неблагоприятных воздействий от специфической целевой работы ПУ.

Указанная цель достигается тем, что подъемно-поворотную ПУ (в т.ч. с быстросменными ТПК) и спутниковый измеритель располагают на мобильном шасси (МШ) длиной не менее 3 м, посредством антенн спутникового измерителя формируют базовое направление (БН) в диапазоне углов между продольной осью и диагональю МШ в плане, для чего одну антенну измерителя устанавливают в передней, а вторую антенну измерителя устанавливают в задней оконечности МШ стационарно либо на раскладной штанге, и производят координатную привязку БН к связанному с МШ неподвижному угломерному лимбу ПУ, при этом разворот ПУ по направлению стрельбы производят относительно БН, зафиксированного посредством угломерного лимба. В ряде случаев на МШ может быть дополнительно размещена третья антенна измерителя азимута, которую при остановке МШ для прицеливания ПУ выносят вдоль БН на расстояние до 1 км. При этом контроль установки выносной антенны на линии БН может осуществляться с использованием лазерного сигнализатора либо диоптрического размещения световой сигнализации на антеннах измерителя, жестко закрепленных на МШ. Следует отметить, что на расстояние 0,5…3,0 длины МШ дополнительную азимутальную антенну измерителя целесообразно выносить посредством раскладной механической штанги. Дополнительно на МШ с двухантенным измерителем азимута для определения крена может быть стационарно установлена боковая антенна измерителя - перпендикулярно БН на расстоянии 0,2…1,2 ширины МШ (с соответствующим дополнением блока расчета и индикации текущими значениями крена МШ). При этом, в ряде случаев, две антенны измерителя размещают на одинаковой высоте на правой и левой сторонах кабины МШ, а третью антенну измерителя размещают в задней оконечности МШ на таком же расстоянии от продольной оси МШ, как и одну из антенн на кабине. В некоторых случаях может оказаться целесообразным размещение параллельно прицельной оси ПУ двух антенн измерителя азимута на оконечностях дополнительно введенной балки. При этом определение местоположения антенн измерителя при их установке на МШ и ПУ целесообразно производить с использованием оптических контрольных элементов, которые жестко закрепляют на каждой антенне.

Принципиальная схема пусковой установки на МШ, которая реализует предложенный способ азимутального прицеливания, приведена на фиг. 1. Формирование посредством двухантенного измерителя базового направления параллельно (вдоль) продольной оси МШ представлено на фиг. 2, по диагонали МШ (в плане) - на фиг. 3. Схемы размещения антенн измерителя на раскладных механических штангах показаны на фиг. 4 и фиг. 6 (варианты). Принципиальная схема развертывания выносной антенны измерителя относительно МШ приведена на фиг. 5. Вариант стационарного размещения на МШ трехантенного измерителя представлен на фиг. 7. Схема дополнительного двухантенного измерителя на оконечностях балки ПУ показана на фиг. 8.

Приняты обозначения:

1 - силовой корпус (рама) и трансмиссия МШ, включая обеспечивающие системы и агрегаты;

2 - кабина МШ;

3 - подъемно-поворотная ПУ;

4 - ТПК (направляющая) ракетного (кинетического) боеприпаса;

5 - передняя антенна измерителя;

6 - задняя антенна измерителя;

7 - раскладная (выдвижная) механическая штанга;

8 - дополнительная выносная антенна измерителя;

9 - боковая антенна измерителя;

10 - балка;

11 - головная на ПУ антенна измерителя;

12 - хвостовая на ПУ антенна измерителя.

Азимутальное прицеливание ПУ по предлагаемому техническому решению осуществляется следующим образом. Мобильное шасси поз.1 представляет собой колесную (гусеничную, колесно-гусеничную, на воздушной подушке и т.п.) платформу, на которой размещены, в частности, кабина поз. 2 (предназначена для штатного размещения экипажа и управления МШ) и подъемно-поворотная ПУ поз. 3 с закрепленным на ней одним либо несколькими ТПК (направляющими) поз. 4. Допускается как сменная (например, для одноразовых ТПК), так и стационарная (например, для многоствольных направляющих с перезаряжанием боеприпасов) реализация конструктива поз. 4. В данном случае важно отметить, что с учетом характерной длины ТПК (направляющих) поз. 4 тактического (оперативно-тактического) ракетно-артиллерийского вооружения сухопутных войск в диапазоне 2…12 м, общая длина МШ поз. 1 - для классической компоновки ПУ поз. 3 - будет на уровне 3…14 м (см. фиг. 1-3). В этой связи представляется целесообразным использование жесткой длинномерной базы МШ поз. 1 для определения с высокой точностью (не хуже десятых долей углового градуса) географического азимута МШ (базового направления) посредством двухантенного измерителя координат на базе спутниковых навигационных систем ГЛОНАСС, GPS, BeiDou (в перспективе - Galileo, IRNSS) и последующее азимутальное прицеливание (разворот по направлению стрельбы) ПУ поз. 3 именно относительно измеренного с высокой точностью БН. Расположение БН в плане, определяемое вдоль линии контрольных элементов антенн поз. 5 и поз. 6, целесообразно либо вдоль (параллельно) продольной оси МШ поз. 1 (см. фиг. 2, 4), либо по диагонали МШ поз. 1 (см. фиг. 3), либо в диапазоне углов между продольной осью и одной из диагоналей МШ (в общем случае). Материализованное таким образом БН (на длине/базе не менее 3 м) координатно привязывают (с точностью до десятых…сотых долей углового градуса) к жестко связанному с МШ поз. 1 неподвижному азимутальному угломерному лимбу ПУ поз. 3. При этом разворот ПУ поз. 3 по направлению стрельбы с требуемой точностью производят относительно БН, зафиксированного посредством неподвижного угломерного лимба (с периодическим контролем координатной привязки).

Как правило, азимутальное прицеливание ПУ поз. 3 по предлагаемому техническому решению производится с места (при неподвижном МШ поз. 1), хотя в ряде случаев - при существенно сниженных требованиях к точности - допускается азимутальное прицеливание ПУ поз. 3 в движении (при отсутствии резких эволюций МШ поз. 1). При этом с целью улучшения точности определения БН за счет увеличения базы МШ поз. 1 одна (поз. 5) либо обе (поз. 5, поз. 6) антенны измерителя могут быть выдвинуты вдоль БН (например, вперед и/или назад по продольной оси МШ поз. 1) на раскладной штанге поз. 7 (см. фиг. 4).

Дальнейшее увеличение точности азимутального прицеливания ПУ поз. 3 при стрельбе с места может быть достигнуто путем кардинального увеличения антенной базы измерителя азимута. Вариантом технической реализации в данном случае может являться оснащение МШ поз. 1 дополнительной - третьей - антенной поз. 8 измерителя азимута (см. фиг. 5), которую при занятии МШ позиции для стрельбы выносят вдоль БН (вперед или назад) на расстояние до 1 км (выбрано из условия гарантированного обеспечения точности азимутального прицеливания ПУ не хуже сотых...тысячных долей углового градуса для стрельбы оперативно-тактических ракет сухопутных войск на максимальный радиус действия). При этом контроль установки выносной антенны поз. 8 измерителя на линии БН осуществляют, например, с использованием лазерного сигнализатора (обеспечивает удержание лазерного луча с МШ поз. 1 на контрольном элементе выносной антенны поз. 8) либо с использованием диоптрического размещения световой индикации на антеннах поз. 5 и поз. 6, жестко закрепленных на МШ поз. 1 (диоптрическое размещение световой индикации предполагает однозначное «концентрическое» визирование оператором изображения антенных устройств поз. 5, поз. 6 с линии БН при правильной установке антенны поз. 8 и, соответственно, искажение «концентрической» геометрии изображения в случае смещения антенны поз. 8 с линии БН).

В более простом варианте технической реализации - при достаточности отнесения дополнительной антенны поз. 8 на расстояние 0,5…3,0 длины МШ поз. 1 - указанную дополнительную антенну поз. 8 выносят вдоль БН (вперед или назад) посредством раскладной штанги поз. 7 (см. фиг. 6).

При необходимости иметь данные по крену МШ поз. 1 на мобильном шасси может быть жестко установлена на максимальном удалении (плече) от БН дополнительная боковая антенна поз. 9 измерителя (см. фиг. 7). С учетом рациональных значений необходимой точности определения крена, прочности/жесткости несущих силовых элементов, в т.ч. выносных, удобства монтажа и эксплуатации размещение антенны поз. 9 целесообразно выполнять на расстоянии 0,2…1,2 ширины МШ поз. 1 перпендикулярно БН. Например, представляется рациональным жесткое (стационарное) размещение антенн поз. 5 и поз. 9 измерителя на одинаковой высоте на правой и левой сторонах кабины поз. 2 МШ поз. 1 (определение крена), при этом антенну поз. 6 измерителя стационарно размещают в задней оконечности МШ поз. 1 на таком же расстоянии (плече) от продольной оси МШ, как и одну из антенн (в данном случае, поз. 5) на кабине поз. 2 (определение БН). Соответственно, блок расчета и индикации программно дополняется в части определения текущих значений крена МШ поз. 1.

В ряде случаев может найти применение вариант формирования второго базового направления (БН2) параллельно прицельной линии ПУ поз. 3 в дополнение к основному (первому) базовому направлению (БН1), формируемому на МШ поз. 1 как описано выше (см. фиг. 8). При этом дополнительные антенны - поз. 11 (головная антенна) и поз. 12 (хвостовая антенна) измерителя азимута - жестко размещают на оконечностях дополнительно введенной балки поз. 10, которую стационарно закрепляют на ПУ поз. 3 параллельно прицельной линии. Данный вариант позволяет оперативно обеспечить предварительное (грубое) азимутальное прицеливание ПУ, что может найти применение на некоторых ракетно-артиллерийских комплексах, допускающих открытие огня с минимальной предварительной подготовкой. Кроме того, данный вариант позволяет работать в штатном режиме со сменными ТПК, применять унифицированные по датчиковому и вычислительному составу автоматизированные информационно-управляющие системы прицеливания ПУ, взаимно калибровать, а также, в ряде случаев, дублировать формирование базового направления.

Следует отметить, что определение местоположения стационарно закрепляемых и выносных на штанге поз. 7 антенн измерителя при их размещении на МШ поз. 1 и балке поз. 10 ПУ поз. 3 целесообразно осуществлять с использованием оптических контрольных элементов, которые жестко закрепляют на каждой антенне. При этом посредством традиционной технологии взаимной привязки объектов на базе оптических коллиматоров достигаются необходимые точности установки антенн измерителя в том или ином описанном выше сочетании, которые, в свою очередь, обеспечивают заявленную точность азимутального прицеливания ПУ.

Прицеливание подъемно-поворотной ПУ с заданной точностью по углу места (в вертикальной плоскости) осуществляется посредством штатных аппаратно-программных средств, включая датчики угла наклона ПУ (например, на базе инклинометров).

Применение предложенного технического решения целесообразно для азимутального прицеливания дальнобойных ракетных (артиллерийских) комплексов сухопутных войск, размещаемых на мобильных шасси. При этом длинномерная база МШ позволяет достигать повышенных точностей азимутального прицеливания ПУ относительно базового направления (на уровне десятых…сотых долей углового градуса), что гарантированно обеспечивает решение задачи высокоточного попадания в цель при стрельбе с закрытых позиций.


СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ
СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ
СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ
СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ
СПОСОБ АЗИМУТАЛЬНОГО ПРИЦЕЛИВАНИЯ ПУСКОВОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Showing 121-130 of 175 items.
18.01.2019
№219.016.b118

Способ формирования наборного ленточного провода

Изобретение относится к электротехнике, в частности к кабельной технике, а именно к изготовлению и применению ленточных проводов, и может быть использовано в сложных радиотехнических и электронных системах. Формирование геометрии ленточного провода производят путем параллельной раскладки...
Тип: Изобретение
Номер охранного документа: 0002677246
Дата охранного документа: 16.01.2019
14.03.2019
№219.016.defc

Механизм расфиксации зацепляющего штыря имитатора отрывной платы

Изобретение относится к механизмам для фиксации, удерживания и расфиксации элементов имитатора отрывных плат летательных аппаратов (ЛА). Устройство содержит пластины, между которыми на осях вращения расположен зацеп, вставший на упор и удерживающий зацепляющий штырь во взведенном положении от...
Тип: Изобретение
Номер охранного документа: 0002681803
Дата охранного документа: 12.03.2019
17.03.2019
№219.016.e2d1

Устройство складывания аэродинамической поверхности летательного аппарата

Устройство складывания аэродинамической поверхности летательного аппарата (ЛА) содержит подвижную и неподвижную части аэродинамической поверхности, исполнительные механизмы складывания в виде приводов и Г-образных качалок, короткие плечи которых зафиксированы на осях вращения, установленных в...
Тип: Изобретение
Номер охранного документа: 0002682152
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ecef

Складываемая аэродинамическая поверхность летательного аппарата

Изобретение относится к авиационной и ракетной технике, стартующей из транспортно-пускового контейнера. Складываемая аэродинамическая поверхность летательного аппарата содержит панель и узел подвески к корпусу летательного аппарата, которые образуют шарнирное соединение с помощью оси...
Тип: Изобретение
Номер охранного документа: 0002682948
Дата охранного документа: 22.03.2019
29.03.2019
№219.016.ed43

Способ компоновки космического аппарата

Изобретение относится к космической технике и может использоваться при проектировании автоматических космических аппаратов (КА) для эксплуатации на околоземных орбитах с негерметичными приборными контейнерами, выполненными из сотопанелей (СП) с применением тепловых труб (ТТ). В способе...
Тип: Изобретение
Номер охранного документа: 0002682891
Дата охранного документа: 22.03.2019
11.04.2019
№219.017.0b22

Композиционный материал для замещения костной ткани и эндопротезы суставов, изготовленные из него

Изобретение может быть использовано в медицине, в области композиционных материалов для изготовления эндопротезов, используемых в ортопедии для замены пораженных естественных суставов человека. Эндопротез тазобедренного сустава, эндопротез коленного сустава, эндопротез локтевого сустава,...
Тип: Изобретение
Номер охранного документа: 0002684409
Дата охранного документа: 09.04.2019
29.04.2019
№219.017.3e3d

Способ навигации летательного аппарата

Изобретение относится к управляемым летательным аппаратам (ЛА) различных типов базирования. Технической задачей предлагаемого изобретения является создание способа навигации ЛА с радиолокационными и/или оптическими корреляционно-экстремальными системами конечного наведения (КЭСКН), позволяющего...
Тип: Изобретение
Номер охранного документа: 0002686453
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.4793

Способ ультразвукового контроля изделий из композиционных материалов

Использование: для ультразвукового контроля изделий из композиционных материалов. Сущность изобретения заключается в том, что осуществляют подачу ультразвуковых волн при помощи преобразователя перпендикулярно контактной поверхности объекта контроля с направлением волны через одну фокальную ось...
Тип: Изобретение
Номер охранного документа: 0002686488
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.4819

Сверхзвуковая ракета

Изобретение относится к крылатым и аэробаллистическим ракетам с прямоточными воздушно-реактивными двигателями (ПВРД). Сверхзвуковая ракета (СР) включает фюзеляж в составе головного, центральных и хвостового отсеков, ПВРД и нерегулируемый воздухозаборник, бортовую аппаратуру системы управления в...
Тип: Изобретение
Номер охранного документа: 0002686567
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.4822

Космический аппарат-эвакуатор

Изобретение относится к космической технике. Космический аппарат-эвакуатор содержит корпус, устройства системы управления и электропитания, двигательную установку, электромеханическую систему захвата космического аппарата на орбите. На корпусе расположены не менее двух оптических камер,...
Тип: Изобретение
Номер охранного документа: 0002686563
Дата охранного документа: 29.04.2019
Showing 91-91 of 91 items.
12.04.2023
№223.018.4503

Устройство для нанесения сверхтолстых слоев поликристаллического кремния

Изобретение относится к области изготовления полупроводниковых структур и может быть использовано при производстве кремниевых пластин для изготовления силовых приборов в микроэлектронике. Сущность изобретения заключается в том, что в устройство для нанесения сверхтолстых слоев...
Тип: Изобретение
Номер охранного документа: 0002769751
Дата охранного документа: 05.04.2022
+ добавить свой РИД