×
13.01.2017
217.015.8cf1

Результат интеллектуальной деятельности: СПОСОБ КОНТАКТНОЙ ЛИТОТРИПСИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, хирургии. Осуществляют воздействие на конкремент при контактной литотрипсии. На дистальный конец световода наносят поглощающий, термостойкий, износоустойчивый слой. Используется лазерное излучение, поглощающееся в специально нанесенном на торец волокна слое. В составе пленки, формирующей названный слой, может быть сополимерный композит или дисперсия углеродных нанотрубок. Проплавление конкремента в месте контакта со световодом происходит под действием высокой температуры. Генерируемый при этом ультразвук частотой до 1 МГц обеззараживает место воздействия, уменьшает выход бактериальной флоры из биопленок, содержащихся в конкременте. Способ упрощает технологию подготовки литотриптеров, повышает эффективность литотрипсии. 8 з.п. ф-лы.

Изобретение относится к медицине, а именно к урологии, и может быть использовано для контактной лазерной литотрипсии камней в полостях, заполненных жидкостью, например в мочеточнике, мочевом пузыре, уретре и др.

Контактная литотрипсия - это разрушение камней с помощью различных инструментов и методов, при котором происходит непосредственный контакт инструмента и камня в организме пациента. Существует несколько видов контактных литотриптеров: электрогидравлический, ультразвуковой, пневматический, электрокинетический, лазерный.

В электрогидравлических литотриптерах используются высокоэнергетические разряды тока на верхушке электрода. Они образуют пузырьки, которые затем схлопываются и создают акустическое давление или ударную волну. Высокое давление и тепло образуются на расстоянии 5 мм от кончика электрода, при этом необходимо соблюдать осторожность, так как имеется высокий риск перфорации мочеточника. В электродах меньшего диаметра используется низкий вольтаж, что снижает эффективность, и, соответственно, лечение твердых камней может быть затруднено.

Ультразвук. В цельном металлическом зонде образуются продольные вибрации, за счет прохождения высокоэнергетичного тока через пьезокерамическое вещество. В результате этого активированные кристаллы образуют ультразвуковую волну (20-27 кГц), которая воздействует на стальной зонд, образуя высокочастотные синусоидальные вибрации. За счет этих вибраций зонд воздействует на камень как «отбойный молоток», разрушая его в точке воздействия. Зонд охлаждается за счет ирригации жидкости, фрагменты камня удаляются через полость трубки за счет использования всасывающего насоса.

Для механического разрушения камней используются или воздушные компрессоры, или миниатюрные устройства с электромагнитными ударно-волновыми эмиттерами для создания движущей силы. Сила разрушения пропорциональна длительности энергетического импульса и амплитуде движения. Последующий эффект «отбойного молотка» может приводить к нежелательному движущему воздействию, которое может проявляться в продвижении камня вверх по мочеточнику и в почку, что делает камень не достижимым для уретроскопа, или камень может недостаточно фрагментироваться. Попытаться нейтрализовать этот эффект можно с помощью применения вместе с зондом отсасывающих устройств или корзин Дормиа.

Импульсный лазер на красителе. Энергия лазера с длиной волны 520 нм передается через кварцевое волокно и поглощается камнем. Это техника недостаточно эффективна по отношению к цистиновым камням и камням из моногидрата оксалата кальция, так как они плохо поглощают излучение лазера с такой длиной волны. В месте воздействия образуются пузырьки, которые, увеличиваясь и схлопываясь, образуют волну акустического давления, ударную волну. Краситель сделан из разлагающегося материала и может нуждаться в замене каждые несколько недель. Краситель необходим для создания определенной длины волны лазерного излучения.

Гольмиевый лазер. Излучение гольмиевого лазера на иттриево-алюминиевом гранате (Ho:YAG) приводит к вапоризации камня при прямом контакте волокна с камнем. Этот полупроводниковый лазер передает э.м. энергию с длиной волны 2100 нм через кварцевое волокно низкой плотности диаметром 200-1000 мкм. В результате образуется ударная волна за счет увеличения и затухания пузырьков, так как жидкость, находящаяся в фокусе системы, испаряется во время лазерного импульса. Дальнейшая передача энергии происходит через эти полости с паром, что называется эффектом Мозеса. Лазерная литотрипсия не приводит к ретроградному смещению камня и миграции его в почку, что нередко происходит при пневматической литотрипсии.

По патенту RU 2334486 (МПК A61B 18/22 (2006.01)) от 19.06.2006 г. известен способ контактной лазерной литотрипсии. Изобретение относится к области медицины и предназначено для удаления камней из желчных протоков. К конкременту подводят лазерный световод и производят лазерную контактную литотрипсию с помощью излучения YAG-Ho лазера с длиной волны 2,09 мкм в импульсном режиме с частотой 5-10 Гц и энергией излучения 0,5-1,0 Дж.

Ближайшим аналогом разработанного способа является способ контактной литотрипсии камней мочеточника, мочевого пузыря и уретры, известный по патенту RU 2294165 (МПК A61B 17/225 (2006.01)) от 07.06.2005 г. Изобретение относится к медицине, а именно к урологии, и касается способа контактной литотрипсии камней мочеточника, мочевого пузыря и уретры. В данном способе воздействуют на камень импульсом энергии с частотой следования импульсов 1-5 Гц и длительностью фронта импульса не более 100 нс.

Недостатком известных способов являются ограничения, накладываемые на тип используемых лазеров. В результате конструкции получаются дорогостоящими и сложными в изготовлении. К тому же разрушение конкремента происходит путем дробления его на фрагменты, в результате чего «разлетаются» содержащие биопленки с патогенной микрофлорой осколки конкремента, механически травмируя окружающую ткань почки (лоханки, мочеточника).

Задачей, на решение которой направлено данное изобретение, является разработка способа контактной литотрипсии, при котором не будет ограничений на тип используемого лазера, что значительно упростит и удешевит технологию изготовления литотриптеров, а также разработка способа контактной литотрипсии, который в процессе разрушения конкремента обеспечит обеззараживание места воздействия на конкремент.

Указанный технический результат достигается благодаря тому, что разработанный способ контактной литотрипсии так же, как и способ, который является ближайшим аналогом, включает воздействие на конкремент световой энергией через световод, разрушение конкремента.

Новым в разработанном способе контактной литотрипсии является то, что на дистальный конец световода наносят поглощающий от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкий, износоустойчивый слой, в результате чего разрушение конкремента производят за счет тепловой энергии, то есть происходит проплавление конкремента, кроме того, под действием высокой температуры в месте контакта световода и конкремента генерируется высокочастотный ультразвук с частотой до 1 МГц, который обеззараживает место воздействия на конкремент, уменьшая выход бактериальной флоры из биопленок, содержащихся в конкременте.

В первом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют гель полититаноксида в среде метакрилового мономера, содержащий инициатор радикальной полимеризации. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в гель и помещают в термостат для формирования пленки гибридного органо-неорганического сополимера. Особенностью является потемнение наконечника при прохождении УФ света. Температура эксплуатации до 300°C.

Во втором частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют гель полититаноксида в среде метакрилового мономера, содержащий инициатор радикальной полимеризации и прекурсор наночастиц серебра - AgNO3. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в гель и помещают в термостат для формирования пленки нанокомпозита наночастиц серебра в органо-неорганическом сополимере. Дистальный конец световода подвергают УФ-облучению для формирования наночастиц серебра и почернения сополимера. Особенность - получаемый поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкий, износоустойчивый слой обладает ярко выраженными бактерицидными свойствами. Температура эксплуатации до 300°C.

В третьем частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют гель полититаноксида в среде метакрилового мономера, содержащий инициатор радикальной полимеризации и наночастицы серебра. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в гель и помещают в термостат до формирования пленки нанокомпозита - органо-неорганического сополимера, содержащего наночастицы серебра. Температура эксплуатации до 300°C.

В четвертом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют раствор полиакрилонитрила (пАН) в диметилформамиде (ДМФА). Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в раствор и помещают в термостат для формирования пленки. Для получения термостойкого пАН черного цвета выполняют термообработку дистального конца световода при температуре 600-800°C. Температура эксплуатации до 600°C.

В пятом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию сажи марки К-354 (технический углерод) в растворе пАН в ДМФА. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения сажи по дистальному концу световода, и высушивают в термостате. Проводят термообработку при температуре 600-800°C. Термостойкость покрытия до 800°C.

В шестом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию углеродных нанорубок (УНТ) марки «Таунит-М» в растворе пАН в ДМФА. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения УНТ по дистальному концу световода, и высушивают в термостате. Проводят термообработку при температуре 600-800°C для превращения пАН в термостойкий полимер темного цвета. Термостойкость покрытия до 800°C.

В седьмом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию сажи марки К-354 (технический углерод) в жидком стекле. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения сажи по дистальному концу световода, и высушивают в термостате. Затем опускают дистальный конец световода в дистиллированную воду для экстракции щелочи, исходно присутствующей в жидком стекле. Термостойкость покрытия до 1000°C.

В восьмом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию УНТ марки «Таунит-М» в жидком стекле. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения УНТ по дистальному концу световода, и высушивают в термостате. Затем опускают дистальный конец световода в дистиллированную воду для экстракции щелочи, исходно присутствующей в жидком стекле. Термостойкость покрытия до 1000°C.

Таким образом, нанесение на дистальный конец световода поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя позволяет использовать разнообразные типы лазеров в литотриптерах, что значительно упрощает и удешевляет технологию их изготовления.

В результате того, что разрушение конкремента производят за счет тепловой энергии, происходит проплавление конкремента, а не дробление с «разбрасыванием осколков», механически травмирующих окружающую ткань. К тому же, разрушение камня во время операции может явиться пусковым механизмом активации роста микроорганизмов, интегрированных в биопленку. Миграция бактерий в сосудистое русло может вызвать септические осложнения (статья «К вопросу об инфекционном генезе камней (электронно-микроскопическое исследование)», ж. Урология №3 - 2012, стр. 4-7, авторы Диденко Л.В., Перепанова Т.С., Толордава Э.Р. и др.).

Из статьи Астаховой С.А. «Обеззараживание воды высокочастотным ультразвуком» (Вестник ВСГУТУ №4 - 2013 от 25 августа, стр. 164-167) известно, что при высоких температурах около 0,01% молекул воды внутри пузырька диссоциируют на водородные и гидроксильные радикалы, также образуются пероксильные радикалы и происходит рекомбинация радикалов с образованием пероксида водорода. Гидроксильный радикал считается наиболее важным окисляющим агентом, обеспечивающим инактивацию клетки.

Таким образом, под действием высокой температуры (от 300°C до 1000°C) в месте контакта световода и конкремента генерируется высокочастотный ультразвук с частотой до 1 МГц, который обеззараживает место воздействия на конкремент, уменьшая выход бактериальной флоры из биопленок, содержащихся в конкременте.

Источник поступления информации: Роспатент

Showing 31-40 of 71 items.
20.01.2018
№218.016.138f

Источник нейтронов ограниченных размеров для нейтронной томографии

Заявленное изобретение относится к источнику нейтронов ограниченных размеров для нейтронной томографии, а именно к «точечному» источнику нейтронов с характерными размерами меньше 100 мкм с потоком нейтронов на уровне 1010 нейтр⋅с-1. В заявленном устройстве нейтроны образуются в результате...
Тип: Изобретение
Номер охранного документа: 0002634483
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.13c9

Способ идентификации переменного морского течения по данным радиолокационных наблюдений

Изобретение относится к радиолокационным методам изучения водной поверхности с целью обнаружения переменных течений. Достигаемый технический результат заключается в том, что способ позволяет идентифицировать переменные во времени и пространстве морские течения, которые на масштабах порядка...
Тип: Изобретение
Номер охранного документа: 0002634592
Дата охранного документа: 01.11.2017
17.02.2018
№218.016.2e1b

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски, в котором у поверхности алмазного образца формируется собирающая излучение центров окраски оптическая система, состоящая из конуса с круглым основанием из оптического стекла, окружающего конус...
Тип: Изобретение
Номер охранного документа: 0002643694
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.367d

Изолятор фарадея с переменным направлением поля магнитной системы

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров ближнего и среднего ИК-диапазона. Изолятор Фарадея с переменным направлением поля магнитной системы содержит последовательно расположенные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002646551
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.4420

Сильноточный источник пучка ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к области формирования сильноточных пучков ионов путем их экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Сильноточный источник пучков ионов на основе плазмы электронно-циклотронного...
Тип: Изобретение
Номер охранного документа: 0002649911
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4e94

Источник пучка ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к области формирования сильноточного пучка ионов путем его экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Разработанное устройство может обеспечивать эффективную экстракцию ионов из...
Тип: Изобретение
Номер охранного документа: 0002650876
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.56e6

Способ получения фотолюминесценции отдельных центров окраски в осажденном из газовой фазы алмазе

Изобретение относится к области генерации оптического излучения и касается способа получения фотолюминесценции отдельных центров окраски в алмазе. Способ включает в себя воздействие на алмазный образец возбуждающим излучением и сбор излучения центров окраски с лицевой поверхности образца с...
Тип: Изобретение
Номер охранного документа: 0002655026
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5736

Способ измерения характеристик магнитного поля

Изобретение относится к области измерительной техники и касается способа измерения характеристик магнитного поля. Способ включает в себя помещение кристалла алмаза с NV-центрами в область измеряемого магнитного поля, направление на кристалл электромагнитного излучения оптического диапазона,...
Тип: Изобретение
Номер охранного документа: 0002654967
Дата охранного документа: 23.05.2018
25.06.2018
№218.016.65e8

Алмазный фотокатод

Изобретение относится к фотокатодам, работающим в видимой и ультрафиолетовой областях спектра, которые могут быть использованы в фотоинжекторах электронов для ускорителей кильватерного типа, лазеров на свободных электронах, а также для электронно-оптического преобразования сигналов в различных...
Тип: Изобретение
Номер охранного документа: 0002658580
Дата охранного документа: 21.06.2018
Showing 31-40 of 46 items.
20.01.2018
№218.016.138f

Источник нейтронов ограниченных размеров для нейтронной томографии

Заявленное изобретение относится к источнику нейтронов ограниченных размеров для нейтронной томографии, а именно к «точечному» источнику нейтронов с характерными размерами меньше 100 мкм с потоком нейтронов на уровне 1010 нейтр⋅с-1. В заявленном устройстве нейтроны образуются в результате...
Тип: Изобретение
Номер охранного документа: 0002634483
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.13c9

Способ идентификации переменного морского течения по данным радиолокационных наблюдений

Изобретение относится к радиолокационным методам изучения водной поверхности с целью обнаружения переменных течений. Достигаемый технический результат заключается в том, что способ позволяет идентифицировать переменные во времени и пространстве морские течения, которые на масштабах порядка...
Тип: Изобретение
Номер охранного документа: 0002634592
Дата охранного документа: 01.11.2017
17.02.2018
№218.016.2e1b

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски, в котором у поверхности алмазного образца формируется собирающая излучение центров окраски оптическая система, состоящая из конуса с круглым основанием из оптического стекла, окружающего конус...
Тип: Изобретение
Номер охранного документа: 0002643694
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.367d

Изолятор фарадея с переменным направлением поля магнитной системы

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров ближнего и среднего ИК-диапазона. Изолятор Фарадея с переменным направлением поля магнитной системы содержит последовательно расположенные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002646551
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
13.09.2018
№218.016.8705

Биосовместимая ранозаживляющая композиция

Изобретение относится к медицине. Описана композиция, которая содержит хитозан и/или солевую форму хитозана или его производных - блок- и привитые сополимеры, такие как хитозан - поливинилпирролидон, и органо-неорганический сополимер полилактида с полититаноксидом при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002666599
Дата охранного документа: 11.09.2018
14.09.2018
№218.016.87f5

Способ диагностики мочекаменной болезни

Изобретение относится к медицине, в частности к нефрологии и урологии,и может быть использовано для диагностики мочекаменной болезни. Способ диагностики мочекаменной болезни включает предварительную подготовку образца сыворотки крови пациента, исследование подготовленного образца сыворотки с...
Тип: Изобретение
Номер охранного документа: 0002666948
Дата охранного документа: 13.09.2018
19.04.2019
№219.017.33b4

Устройство диффузионной флуоресцентной томографии

Изобретение относится к медицинской технике, в частности к устройствам диффузионной флуоресцентной томографии. Устройство содержит лазерный источник излучения, снабженный волоконно-оптическим выходом, систему электромеханических подвижек волоконно-оптического выхода, приемник излучения,...
Тип: Изобретение
Номер охранного документа: 0002441582
Дата охранного документа: 10.02.2012
29.06.2019
№219.017.a0d1

Способ неинвазивного определения кислородного статуса тканей

Изобретение относится к медицине, а именно к медицинской диагностике, и может быть использовано для оценки кислородного статуса тканей. Осуществляют амплитудную модуляцию излучения лазерных источников. Проводят сканирование исследуемой ткани при синхронном перемещении источника и приемника....
Тип: Изобретение
Номер охранного документа: 0002437617
Дата охранного документа: 27.12.2011
02.10.2019
№219.017.cea9

Способ получения хитозановой губки (варианты)

Группа изобретений относится к химии высокомолекулярных соединений, касается вариантов способа получения хитозановой губки, которая может быть использована в медицине в качестве раневых покрытий, гемостатических материалов, матриц для тканевой инженерии. Способ получения хитозановой губки...
Тип: Изобретение
Номер охранного документа: 0002700693
Дата охранного документа: 19.09.2019
+ добавить свой РИД