×
13.01.2017
217.015.8cc1

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ПЕРЕДВИЖЕНИЯ КОСМОНАВТА ОТНОСИТЕЛЬНО КОСМИЧЕСКОГО АППАРАТА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002604892
Дата охранного документа
20.12.2016
Аннотация: Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и обработку данных о положении космонавта, включая данные о форме и ориентации космонавта, относительно КА и его подвижных и перемещаемых элементов. При этом определяют параметры относительного положения местоположений излучателей инфракрасных импульсных сигналов при не менее чем одном заданном фиксированном положении подвижных частей космонавта с размещенными на упомянутых подвижных частях по не менее чем одному излучателю инфракрасных импульсных сигналов. Система контроля передвижения космонавта относительно КА дополнительно содержит не менее двух блоков излучателей инфракрасных импульсных сигналов, размещенных на разных подвижных частях космонавта, не менее двух радиоприемных устройств, не менее двух средств сопряжения радиоустройств с блоками излучателей инфракрасных сигналов, не менее четырех блоков позиционно-чувствительных детекторов инфракрасного излучения, размещенных в разнесенных точках, фиксированных в системе координат КА, не менее четырех оптических систем, не менее четырех блоков формирования данных приема инфракрасных сигналов, не менее четырех средств сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов, не менее пяти радиоприемо-передающих устройств, блок формирования команд управления излучением и приемом инфракрасных сигналов, средство сопряжения аппаратуры с пятым радиоприемо-передающим устройством, синхронизатор, блок задания параметров расположения детекторов инфракрасного излучения, блок задания параметров оптических систем, блок определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов, блок определения координат местоположений излучателей инфракрасных сигналов, блок индикации фиксированных положений космонавта, блок определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавта, блок определения параметров положения перемещаемых элементов на КА, блок измерения параметров движения КА, блок измерения параметров положения подвижных элементов конструкции КА, блок прогнозирования параметров положения подвижных элементов конструкции КА. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области навигации и может быть использовано для контроля перемещений космонавта относительно космического аппарата (КА) в условиях космического полета.

Известна система для контроля транспортных средств и передвижения персонала (патент РФ 2442220, заявка 2010144354 от 01.11.2010, МПК (2006.01) G08G 1/123), включающая блок сбора и передачи информации об объекте контроля, приемник системы местоопределения, блоки сопряжения с датчиками первичной информации и исполнительными устройствами, блок обработки аналоговых сигналов, порт сопряжения с персональным компьютером, блок автономного питания, блок памяти информации об объекте, коммуникационный сервер, радиомодемы, сервер хранения и архивирования данных, картографический сервер, персональные компьютеры (ПК) для ввода/вывода информации, сеть передачи данных, серверы корпоративных информационных систем. Система реализует способ контроля транспортных средств и передвижения персонала, в котором осуществляют сбор информации об объекте, получаемой от приемника системы местоопределения и датчиков первичной информации, и передачу ее посредством радиосети и сети Интернет в центр контроля на коммуникационный сервер. При срабатывании размещаемых на объекте датчиков коммуникационный сервер передает команды на управление исполнительными устройствами/механизмами, обрабатывает и передает информацию об объектах транспортных средств и передвижении персонала на сервер хранения и архивирования данных и ПК для анализа и автоматизированного сравнения с информацией корпоративных информационных систем. Повышается эффективность контроля транспортных средств и передвижения персонала за счет генерации новых знаний об объектах контроля и процессах.

К недостаткам данных способа и системы можно отнести то, что они не обеспечивают, в частности, учета ориентации оператора относительно окружающих его элементов и пространства.

Известен способ управления передвижным объектом (патент РФ 2370804, приоритет от 28.06.2005, МПК G05B 19/045 (2006.01) - прототип способа), включающий обнаружение движения передвижного объекта, определение местоположения объекта, проверку нахождения местоположения объекта в пределах заранее определенной зоны и формирование команд для управления передвижным объектом по результатам данной проверки.

В качестве системы-прототипа выбрана система слежения за местоположением (патент РФ 2370804, приоритет от 28.06.2005, МПК G05B 19/045 (2006.01) - прототип системы), реализующая способ-прототип и содержащая контроллер, соединенный с компонентом обнаружения движения и компонентом определения местоположения, при этом контроллер содержит блок задания целевой зоны местоположения объекта, блок сравнения, блок выработки команд для управления объектом. Компонент обнаружения движения обнаруживает движение передвижного объекта и вырабатывает для контроллера сигнал, сообщающий о движении. Контроллер в ответ на этот сигнал вызывает определение компонентом определения местоположения передвижного объекта, осуществляет проверку нахождения координат объекта в пределах заранее определенной зоны и по результатам проверки вырабатывает команды для управления объектом.

Данные способ и система обеспечивают управление подвижным объектом в едином цикле с определением координат его местоположения, что позволяет в режиме реального времени управлять движением объекта, используя для этого непосредственно энергию, содержащуюся в сигнале отклика, генерируемого подвижным объектом.

Недостатком способа и системы-прототипов является то, что они не обеспечивают учет внешних (окружающих) условий вокруг объекта подвижной формы во время его перемещения по маршруту, влияющих на выбор маршрута и возможности управления перемещением объекта.

Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности управления пилотируемым КА.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в обеспечении оперативного учета точного текущего положения членов экипажа относительно КА и его подвижных и перемещаемых элементов при контроле передвижения членов экипажа КА как внутри герметичного отсека КА, так и снаружи КА.

Технический результат достигается тем, что в способе контроля передвижения космонавта относительно КА, включающем определение местоположения объекта, проверку нахождения объекта в пределах предусмотренной зоны и формирование команд на передвижение объекта по результатам данной проверки, дополнительно определяют параметры относительного положения местоположений излучателей инфракрасных импульсных сигналов при не менее, чем одном заданном фиксированном положении подвижных частей космонавта с размещенными на упомянутых подвижных частях по не менее чем одному излучателю инфракрасных импульсных сигналов, далее в процессе контроля передвижения космонавта осуществляют формирование управляющих воздействий на упомянутые излучатели инфракрасных импульсных сигналов, осуществляют измерение параметров, генерируемых не менее, чем четырьмя снабженными оптическими системами и размещенными в разнесенных точках, фиксированных в системе координат КА, позиционно-чувствительными детекторами инфракрасного излучения, по измеренным значениям параметров, генерируемых позиционно-чувствительными детекторами инфракрасного излучения, и заданным значениям параметров расположения детекторов и оптических систем определяют значения координат местоположений излучателей инфракрасных импульсных сигналов в системе координат КА, по текущим значениям координат местоположений излучателей инфракрасных импульсных сигналов и параметрам относительного положения местоположений излучателей инфракрасных импульсных сигналов, определенным при заданных фиксированных положениях космонавта, определяют параметры текущего положения космонавта относительно КА, измеряют параметры текущего положения подвижных элементов конструкции КА, измеряют параметры движения КА, после чего формируют команды на передвижение космонавта из его текущего положения в целевые положения по маршруту, определенному с учетом определяемых параметров текущего положения перемещаемых элементов на КА и измеренных текущих и прогнозируемых параметров положения подвижных элементов конструкции КА, прогнозируемые параметры положения которых определяют по измеренным параметрам их текущего положения и измеренным параметрам движения КА.

Технический результат достигается также тем, что система контроля передвижения космонавта относительно КА, включающая блок определения параметров положения космонавта, блок задания параметров целевых положений космонавта, блок сравнения, блок определения маршрута передвижения космонавта, блок формирования команд на передвижение космонавта, при этом выход блока определения параметров положения космонавта соединен со входами блока сравнения и блока определения маршрута передвижения космонавта, выход и второй и третий входы которого соединены, соответственно, с входом блока формирования команд на передвижение космонавта, выходом блока сравнения и выходом блока задания параметров целевых положений космонавта, выход которого также соединен со вторым входом блока сравнения, дополнительно включает не менее двух блоков излучателей инфракрасных импульсных сигналов, размещенных на разных подвижных частях космонавта, не менее двух радиоприемных устройств, не менее двух средств сопряжения радиоустройств с блоками излучателей инфракрасных сигналов, не менее четырех блоков позиционно-чувствительных детекторов инфракрасного излучения, размещенных в разнесенных точках, фиксированных в системе координат КА, не менее четырех оптических систем, не менее четырех блоков формирования данных приема инфракрасных сигналов, не менее четырех средств сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов, не менее пяти радиоприемо-передающих устройств, блок формирования команд управления излучением и приемом инфракрасных сигналов, средство сопряжения аппаратуры с пятым радиоприемо-передающим устройством, синхронизатор, блок задания параметров расположения детекторов инфракрасного излучения, блок задания параметров оптических систем, блок определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов, блок определения координат местоположений излучателей инфракрасных сигналов, блок индикации фиксированных положений космонавта, блок определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавта, блок определения параметров положения перемещаемых элементов на КА, блок измерения параметров движения КА, блок измерения параметров положения подвижных элементов конструкции КА, блок прогнозирования параметров положения подвижных элементов конструкции КА, при этом вход каждого i-го блока излучателя инфракрасных импульсных сигналов и выход каждого i-го радиоприемного устройства, где i=1, 2, 3, соединены, соответственно, с выходом и входом i-го средства сопряжения радиоустройства с блоком излучателя инфракрасных сигналов, причем первые вход и выход и вторые вход и выход каждого i-го, i=1÷4 средства сопряжения радиоустройства с блоком формирования данных приема инфракрасных сигналов соединены с, соответственно, выходом и входом i-го радиоприемо-передающего устройства и выходом и входом i-го блока формирования данных приема инфракрасных сигналов, второй вход которого соединен с выходом i-го блока позиционно-чувствительного детектора инфракрасного излучения, на котором установлена i-я оптическая система, при этом первые выход и вход и вторые выход и вход средства сопряжения аппаратуры с пятым радиоприемо-передающим устройством соединены, соответственно, с входом и выходом пятого радиоприемо-передающего устройства, входом блока определения координат местоположений излучателей инфракрасных сигналов и выходом блока формирования команд управления излучением и приемом инфракрасных сигналов, вход которого соединен с выходом синхронизатора, выход которого также соединен со вторым входом блока определения координат местоположений излучателей инфракрасных сигналов, третий вход которого соединен с выходом блока определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов, первый, второй и третий входы которого соединены с, соответственно, выходом блока задания параметров оптических систем, выходом блока задания параметров расположения детекторов инфракрасного излучения и третьим выходом средства сопряжения аппаратуры с пятым радиоприемо-передающим устройством, причем выход блока определения координат местоположений излучателей инфракрасных сигналов соединен с входами блока определения параметров положения космонавта и блока определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавта, второй вход и выход которого соединены, соответственно, с выходом блока индикации фиксированных положений космонавта и вторым входом блока определения параметров положения космонавта, при этом четвертый и пятый входы блока определения маршрута передвижения космонавта соединены с выходами, соответственно, блока определения параметров положения перемещаемых элементов на КА и блока прогнозирования параметров положения подвижных элементов конструкции КА, разные входы которого соединены с выходами, соответственно, блока измерения параметров движения КА и блока измерения параметров положения подвижных элементов конструкции КА.

Изобретение поясняется фиг. 1, 2, 3.

На фиг. 1 представлена блок-схема системы, реализующей предлагаемый способ, и введены следующие обозначения:

1 - космонавт;

2i, i=1, 2, 3 - первый, второй и третий блоки излучателей инфракрасных импульсных сигналов (БИИИС);

3i, i=1, 2, 3 - первое, второе и третье радиоприемные устройства (РПУ);

4i, i=1, 2, 3 - первое, второе и третье средства сопряжения радиоустройств с блоками излучателей инфракрасных сигналов (ССРБИИС);

5i, i=1÷4 - с первого по четвертый блоки позиционно-чувствительных детекторов инфракрасного излучения (БПЧДИИ);

6i, i=1÷4 - с первой по четвертую оптические системы (ОС);

7i, i=1÷4 - с первого по четвертый блоки формирования данных приема инфракрасных сигналов (БФДПИС);

8i, i=1÷4 - с первого по четвертое средства сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов (ССРБФДПИС);

9i, i=1÷4, 10 - с первого по пятое радиоприемо-передающие устройства (РППУ);

11 - блок формирования команд управления излучением и приемом инфракрасных сигналов (БФКУИПИС);

12 - средство сопряжения аппаратуры с пятым радиоприемо-передающим устройством (ССАПРППУ);

13 - синхронизатор;

14 - блок задания параметров оптических систем (БЗПОС);

15 - блок задания параметров расположения детекторов инфракрасного излучения (БЗПРДИИ);

16 - блок определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов (БОПНДИИИИС);

17 - блок определения координат местоположений излучателей инфракрасных сигналов (БОКМИИС);

18 - блок индикации фиксированных положений космонавта (БИФПК);

19 - блок определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавта (БОПОПИИСФПК);

20 - блок определения параметров положения космонавта (БОППК),

21 - блок задания параметров целевых положений космонавта (БЗПЦПК);

22 - блок сравнения (БС);

23 - блок определения параметров положения перемещаемых элементов на космическом аппарате (БОПППЭКА);

24 - блок измерения параметров движения космического аппарата (БИПДКА);

25 - блок измерения параметров положения подвижных элементов конструкции космического аппарата (БИПППЭККА);

26 - блок прогнозирования параметров положения подвижных элементов конструкции космического аппарата (БППППЭККА);

27 - блок определения маршрута передвижения космонавта (БОМПК);

28 - блок формирования команд на передвижение космонавта (БФКПК).

На фиг. 2 представлен пример циклограммы работы излучателей, детекторов, формирования и передачи данных и введены следующие обозначения:

tи - длительность инфракрасного импульсного сигнала;

tпп - длительность приема-передачи пакета данных по радиоканалу;

tпр - длительность времени прогрева детектора;

tизм - длительность времени измерения инфракрасного импульсного сигнала детектором;

tпз - длительность паузы между окончанием измерения инфракрасного импульсного сигнала детектором и началом передачи данных;

Тц - длительность цикла.

На фиг. 3 представлен пример схемы двухмерного позиционно-чувствительного детектора с четырехсторонним расположением электродов и обозначено:

X, X′, Y, Y′ - выводы детектора.

В предлагаемом способе на первом этапе осуществляется определение параметров относительного положения местоположений излучателей инфракрасных импульсных сигналов при не менее, чем одном заданном фиксированном положении подвижных частей космонавта с размещенными на упомянутых подвижных частях по не менее, чем одному излучателю инфракрасных импульсных сигналов. Данное определение может быть выполнено как непосредственным измерением - например, измерением расстояний между излучателями инфракрасных сигналов с помощью измерителей расстояний (например, рулетки и т.д.), так и другим возможным способом - например, как представлено в предлагаемой системе, посредством излучения и регистрации инфракрасных импульсных сигналов и последующей обработки полученных данных.

Предлагаемая система реализует следующие действия: осуществляют формирование управляющих воздействий на излучатели инфракрасных импульсных сигналов при не менее, чем одном заданном фиксированном положении подвижных частей космонавта с размещенными на упомянутых подвижных частях по не менее, чем одному излучателю инфракрасных импульсных сигналов, осуществляют измерение параметров, генерируемых не менее, чем четырьмя снабженными оптическими системами и размещенными в разнесенных точках, фиксированных в системе координат КА, позиционно-чувствительными детекторами инфракрасного излучения, по измеренным значениям параметров, генерируемых позиционно-чувствительными детекторами инфракрасного излучения, и заданным значениям параметров расположения детекторов и оптических систем определяют значения координат местоположений излучателей инфракрасных импульсных сигналов в системе координат КА, по которым определяют параметры относительного положения местоположений излучателей инфракрасных импульсных сигналов, далее в процессе контроля передвижения космонавта повторяют указанные действия при текущем положении космонавта, начиная с формирования управляющих воздействий на излучатели инфракрасных импульсных сигналов, по текущим значениям координат местоположений излучателей инфракрасных импульсных сигналов и параметрам относительного положения местоположений излучателей инфракрасных импульсных сигналов, определенным при заданных фиксированных положениях космонавта, определяют параметры текущего положения космонавта относительно КА, измеряют параметры текущего положения подвижных элементов конструкции КА, измеряют параметры движения КА, после чего формируют команды на передвижение космонавта из его текущего положения в целевые положения по маршруту, определенному с учетом определяемых параметров текущего положения перемещаемых элементов на КА и измеренных текущих и прогнозируемых параметров положения подвижных элементов конструкции КА, прогнозируемые параметры положения которых определяют по измеренным параметрам их текущего положения и измеренным параметрам движения КА, при этом управление и синхронизацию моментов излучения, приема и передачи данных по результатам приема инфракрасных импульсных сигналов осуществляют по радиоканалу.

Представленная на фиг. 1 система контроля передвижения космонавта относительно КА содержит три блока излучателей инфракрасных импульсных сигналов (БИИИС) 2i, i=1, 2, 3, три радиоприемных устройства (РПУ) 3i, i=1, 2, 3, три средства сопряжения радиоустройств с блоками излучателей инфракрасных сигналов (ССРБИИС) 4i, i=1, 2, 3, четыре блока позиционно-чувствительных детекторов инфракрасного излучения (БПЧДИИ) 5i, i=1÷4, четыре оптических системы (ОС) 6i, i=1÷4, четыре блока формирования данных приема инфракрасных сигналов (БФДПИС) 7i, i=1÷4, четыре средства сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов (ССРБФДПИС) 8i, i=1÷4, семь радиоприемо-передающих устройств (РППУ) 9i, i=1÷4, 10, 25, 27, блок формирования команд управления излучением и приемом инфракрасных сигналов (БФКУИПИС) 11, средство сопряжения аппаратуры с пятым радиоприемо-передающим устройством (ССАПРППУ) 12, синхронизатор 13, блок задания параметров оптических систем (БЗПОС) 14, блок задания параметров расположения детекторов инфракрасного излучения (БЗПРДИИ) 15, блок определения параметров направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов (БОПНДИИИИС) 16, блок определения координат местоположений излучателей инфракрасных сигналов (БОКМИИС) 17, блок индикации фиксированных положений космонавта (БИФПК) 18, блок определения параметров относительного положения излучателей инфракрасных сигналов при фиксированных положениях космонавта (БОПОПИИСФПК) 19, блок определения параметров положения космонавта (БОППК) 20, блок задания параметров целевых положений космонавта (БЗПЦПК) 21, блок сравнения (БС) 22, блок определения параметров положения перемещаемых элементов на космическом аппарате (БОПППЭКА) 23, блок измерения параметров движения космического аппарата (БИПДКА) 24, блок измерения параметров положения подвижных элементов конструкции космического аппарата (БИПППЭККА) 25, блок прогнозирования параметров положения подвижных элементов конструкции космического аппарата (БППППЭККА) 26, блок определения маршрута передвижения космонавта (БОМПК) 27, блок формирования команд на передвижение космонавта (БФКПК) 28.

Каждый i-й, i=1, 2, 3 комплект блоков БИИИС 2i, РПУ 3i и ССРБИИС 4i размещен на одной из подвижных частях космонавта, например, один комплект блоков может быть размещен на туловище, а другой (другие) - на руке и/или ноге.

Каждый i-й, i=1÷4 комплект БПЧДИИ 5i, ОС 6i, БФДПИС 7i, ССРБФДПИС 8i, и РППУ 9i размещен в одной из разнесенных точках, фиксированных в системе координат КА.

Вход каждого i-го БИИИС 2i и выход каждого i-го РПУ 3i, где i=1, 2, 3, соединены, соответственно, с выходом и входом i-го ССРБИИС 4i.

Первые вход и выход и вторые вход и выход каждого i-го, i=1÷4 ССРБФДПИС 8i соединены, соответственно, с выходом и входом i-го РППУ 9i и выходом и входом i-го БФДПИС 7i, второй вход которого соединен с выходом i-го БПЧДИИ 5i, на котором установлена i-ая ОС 6i.

Первые выход и вход и вторые выход и вход ССАПРППУ 12 соединены с, соответственно, входом и выходом пятого РППУ 10, входом БОКМИИС 17 и выходом БФКУИПИС 11. Выход синхронизатора 13 соединен с входом БФКУИПИС 11 и вторым входом БОКМИИС 17.

Третий вход БОКМИИС 17 соединен с выходом БОПНДИИИИС 16.

Первый, второй и третий входы БОПНДИИИИС 16 соединены с, соответственно, выходом БЗПОС 14, выходом БЗПРДИИ 15, третьим выходом ССАПРППУ 12.

Выход БОКМИИС 17 соединен с входами БОППК 20 и БОПОПИИСФПК 19. Второй вход и выход БОПОПИИСФПК 19 соединены, соответственно, с выходом БИФПК 18 и вторым входом БОППК 20.

Выход БОППК 20 соединен со входами БС 22 и БОМПК 27. Выход и со второго по пятый входы БОМПК 27 соединены, соответственно, с входом БФКПК 28, выходом БС 22, выходом БЗПЦПК 21, выходом БОПППЭКА 23, выходом БППППЭККА 26. Разные входы БППППЭККА 26 соединены, соответственно, с выходом БИПДКА 24 и выходом БИПППЭККА 25. Выход БЗПЦПК 21 также соединен со вторым входом БС 22.

Средства сопряжения ССРБИИС 4, ССРБФДПИС 8, ССАПРППУ 12 могут быть выполнены в виде контроллеров (процессоров).

Работа системы осуществляется следующим образом.

Синхронизатор 13 выдает синхронизирующие сигналы на БФКУИПИС 11 и БОКМИИС 17.

БФКУИПИС И в соответствии с поступающими на него синхронизирующими сигналами формирует команды управления блоками БИИИС 2 и БФДПИС 7.

Команды управления от БФКУИПИС 11 на БИИИС 2 поступают через ССАПРППУ 12, РППУ 10, РПУ 3, ССРБИИС 4.

Команды управления от БФКУИПИС 11 на БФДПИС 7 поступают через ССАПРППУ 12, РППУ 10, РППУ 9, ССРБФДПИС 8.

В соответствии с поступившими командами управления БИИИС 2 излучают инфракрасные импульсные сигналы. Инфракрасное излучение данных сигналов через ОС 6 поступает на БПЧДИИ 5. БПЧДИИ 5 генерируют значения выходных параметров, соответствующие поступающему на детекторы инфракрасному излучению, и передают свои выходные данные в БФДПИС 7.

В соответствии с поступившими командами управления БФДПИС 7 принимают в задаваемые командами управления моменты времени данные от БПЧДИИ 5, формируют по ним данные со значениями координат центров световых пятен и амплитуд сигналов детекторов с указанием соответствующих номеров детекторов и в задаваемые командами управления моменты времени выдают сформированные данные на передачу через ССРБФДПИС 8, РППУ 9, РППУ 10, ССАПРППУ 12 в блоки БОПНДИИИИС 16 и БОКМИИС 17 (координаты центров световых пятен передаются в БОПНДИИИИС 16, амплитуда сигнала передается в БОКМИИС 17).

Для экономии ресурса электропитания детекторов БФДПИС 7 может выдавать управляющие команды на БПЧДИИ 5, обеспечивающие работу детекторов только в необходимые интервалы, синхронизированные с моментами излучения инфракрасных импульсных сигналов. Передача таких команд на фиг. 1 обозначена пунктирными стрелками.

На фиг. 2 представлен пример циклограммы работы излучателей, детекторов, формирования и передачи данных, в которой использованы следующие значения величин: tи=0,6 мс; tпп=10 мс; tпр=100 мс; tизм=10 мс; tпз=0…80 мс; Тц=6…60 с.

Значение tпз зависит от номера БПЧДИИ и вычисляется по формуле tпзi=(i-1)*tпп.

Представленная циклограмма обеспечивает возможность по времени приема-передачи по радиоканалу каждого пакета данных определить как номер детектора, данные с которого содержатся в принятом по радиоканалу пакете, так и номер излучателя, инфракрасный импульсный сигнал от которого был принят данным детектором.

БИИИС 2 могут быть выполнены, например, следующим образом. В каждом БИИИС 2 может быть установлено не менее четырех ИК-светодиодов с диаграммой направленности светодиода 90 градусов по половинному уровню излучаемой мощности (уровень 0,5). Светодиоды могут быть установлены на гранях усеченной пирамиды, что обеспечивает суммарную диаграмму направленности не менее 180 градусов по уровню 0,5.

Каждая ОС 6 может быть выполнена в виде малогабаритного объектива с фиксированным фокусным расстоянием, работающего в инфракрасном диапазоне.

БПЧДИИ 5 могут быть выполнены, например, следующим образом. Каждый БПЧДИИ 5 может содержать двухмерный позиционно-чувствительный детектор (датчик) с четырехсторонним расположением электродов и компенсацией нелинейности. На фиг. 3 представлен пример схемы такого детектора. Выводы X, X′, Y, Y′ детектора подаются на четыре схемы измерения тока, которые соответственно измеряют токи Ix, Ix′, Iy, Iy′. Координаты x и y центра светового пятна относительно осей координат, привязанных к детектору, вычисляются по формулам (1) и (2), при этом точка с координатами x=0 и y=0 соответствует центру детектора (L - размер стороны детектора):

Амплитуда сигнала детектора вычисляется по формуле

и характеризует интенсивность регистрируемого детектором инфракрасного излучения.

В БОПНДИИИИС 16 по координатам центров световых пятен, параметрам оптических систем от БЗПОС 14 и параметрам расположения детекторов от БЗПРДИИ 15 определяются параметры направлений от детекторов инфракрасного излучения на излучатели инфракрасных сигналов и выходные данные выдаются в БОКМИИС 17. Например, по координатам светового пятна с учетом параметров установленной на детекторе оптической системы, рассчитывается вектор направления луча, направленного от детектора на излучатель, в системе координат детектора, после чего данный вектор переводится в базовую систему координат (систему координат КА) с учетом параметров расположения детектора относительно базовой системы координат.

В БОКМИИС 17 в соответствии с синхронизирующими сигналами от синхронизатора 13 по амплитудам сигналов детекторов и параметрам направлений от детекторов на излучатели определяются координаты местоположений излучателей и передаются в блоки БОППК 20 и БОПОПИИСФПК 19. Например, координаты местоположений i-го излучателя инфракрасных импульсных сигналов рассчитываются как координаты точки, минимально удаленной от вышеопределенных направлений (лучей) от детекторов инфракрасного излучения на данный излучатель, выбранных с учетом амплитуд сигналов детекторов и/или взаимного углового расположения указанных направлений от детекторов на излучатели.

БИФПК 18 осуществляет индикацию фиксированных положений космонавта, например, путем генерации соответствующих сигналов в моменты, когда космонавт принимает выпрямленное и/или согнутое/сложенное положения.

В БОПОПИИСФПК 19 по координатам местоположений излучателей инфракрасных сигналов и сигналам индикации о нахождении космонавта в заданных фиксированных положениях рассчитываются параметры относительного положения местоположений излучателей инфракрасных сигналов при фиксированных положениях космонавта, которые передаются в БОППК 20.

В БОППК 20 на основе сопоставления текущих значений координат местоположений излучателей инфракрасных сигналов и значений параметров относительного положения излучателей инфракрасных сигналов, полученных при фиксированных положениях космонавта, осуществляется определение текущих параметров положения космонавта, которые передаются в блоки БС 22 и БОМПК 27.

Определенные параметры положения космонавта получены на основе определения положения как минимум двух точек, принадлежащих разным подвижным частям космонавта, и таким образом наряду с местоположением космонавта несут информацию как об ориентации космонавта относительно элементов КА, так и о взаимном относительном положении данных частей космонавта, т.е. информацию о текущей форме и ориентации космонавта - например, выпрямлен или согнут/сложен космонавт с указанием возможного диапазона углов между подвижными частями космонавта и в какую сторону он сориентирован. При этом объем и точность информации о текущей форме и ориентации космонавта определяется количеством излучателей инфракрасных сигналов, установленных на разных подвижных частях космонавта, и количеством фиксированных положений подвижных частей космонавта, при которых определяются запоминаемые параметры относительного положения излучателей инфракрасных импульсных сигналов, используемые в дальнейшем для определения текущих параметров положения космонавта.

В БЗПЦПК 21 осуществляется задание параметров целевых положений космонавта относительно КА, возможно задание как одного конечного положения космонавта, так нескольких последовательных положений, которые необходимо пройти космонавту.

В БОПППЭКА 23 осуществляется определение параметров положения перемещаемых элементов на КА (грузов, оборудования, элементов конструкции и т.д.), например посредством использования базы данных перемещаемых элементов, в которой указываются все перемещаемые элементы и их текущие положения.

В БС 22 выполняется сравнение текущих данных о положении космонавта с параметрами целевых положений космонавта и при наличии рассогласования между ними БС 22 выдает сигнал в БОМПК 27 о необходимости передвижения космонавта.

В БИПДКА 24 осуществляется измерение параметров движения КА в космическом пространстве, включая движение относительно Земли, небесных тел и объектов (Солнце и т.д.), например с использованием систем навигационных измерений КА и спутниковой навигации.

В БИПППЭККА 25 осуществляется измерение параметров положения подвижных элементов конструкции КА (вращающихся солнечных батарей (СБ) и радиаторов, штанг, манипуляторов и т.д.), например, по данным ТМ информации.

В БППППЭККА 26 по измеренным параметрам движения КА и измеренным параметрам положения подвижных элементов конструкции КА осуществляется прогнозирование параметров положения подвижных элементов конструкции КА, выполняемое в соответствии с логикой управления положением подвижных элементов конструкции.

В БОМПК 27 выполняется определение маршрута необходимого передвижения космонавта по КА из текущего положения космонавта в его целевые положения с учетом данных о положении перемещаемых элементов (грузов) на КА и данных о прогнозируемых положениях подвижных элементов конструкции КА, при этом маршрут определяется таким образом, что указанные перемещаемые и подвижные элементы КА не создают помех планируемому перемещению космонавта вдоль всего маршрута перемещения.

В БФКПК 28 осуществляется формирование команд на передвижение космонавта по определенному маршруту.

Современный уровень развития техники обеспечивает малые габаритные и весовые характеристики как комплекта аппаратуры, размещаемого на космонавте, так и оборудования, размещаемого в разнесенных точках на КА.

Например, каждый комплект аппаратуры, размещаемый в одной из точек на космонавте и выполненный на основе ИК-светодиодов L9337 производства фирмы Hamamatsu, имеет вес не более 0,025 кг и размер не более 40×40×40 мм. Каждый комплект аппаратуры, размещаемый в одной из разнесенных точек на КА и выполненный на основе двухмерного позиционно-чувствительного детектора S5991-01 производства фирмы Hamamatsu и объектива BL02820M13 производства фирмы Beward, имеет массу не более 0,5 кг и размер не более 70×100×200 мм.

Опишем технический эффект предлагаемого изобретения.

Предложенные способ и система обеспечивают оперативный учет точного текущего положения членов экипажа относительно КА и его подвижных и перемещаемых элементов при контроле передвижения членов экипажа КА как внутри герметичного отсека КА, так и в открытом космическом пространстве снаружи КА, при этом обеспечивается учет параметров текущего положения космонавта как объекта с подвижными частями, включая информацию о форме и ориентации космонавта, а предложенные для этого технические средства никак не ограничивают перемещения космонавта и не создают помех его деятельности на борту КА.

Предлагаемые способ и система обеспечивают возможность удобного и быстрого наращивания количества используемых излучателей и детекторов излучения, что позволяет быстро и экономично адаптировать систему как к изменению конфигурации КА, так и к увеличению числа космонавтов и увеличению количества размещаемых на космонавтах излучателей.

Достижение технического результата в предложенном изобретении обеспечивается за счет, в том числе:

- использования определяемых параметров положения членов экипажа КА относительно систем и элементов КА, включая информацию о форме и ориентации членов экипажа КА,

- использования измерений текущего положения подвижных элементов конструкции КА и измерений параметров движения КА для прогнозирования положения подвижных элементов конструкции КА вдоль маршрута перемещения членов экипажа КА,

- учета определяемых текущих положений перемещаемых элементов на КА,

- использования инфракрасных импульсных сигналов, излучаемых излучателями, размещенными предложенным способом на членах экипажа КА, регистрации излученного инфракрасного излучения позиционно-чувствительными детекторами инфракрасного излучения, размещенными предложенным способом на КА, измерения генерируемых ими параметров и использования предложенной методики применения измеренных параметров, включая сопоставление определенного текущего положения излучателей с параметрами относительного положения излучателей, определенными при заданных фиксированных положениях членов экипажа КА,

- использования радиоканала для управления и синхронизации моментов излучения, приема и передачи данных по результатам приема инфракрасных импульсных сигналов,

- малых габаритных и весовых характеристик комплектов аппаратуры, размещаемых на членах экипажа и в разнесенных точках на КА.

В том числе достижение технического результата в предложенной системе обеспечивается введением предложенных блоков, а также введением предложенных функциональных связей между блоками и предложенным исполнением уже известных блоков.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ КОНТРОЛЯ ПЕРЕДВИЖЕНИЯ КОСМОНАВТА ОТНОСИТЕЛЬНО КОСМИЧЕСКОГО АППАРАТА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ КОНТРОЛЯ ПЕРЕДВИЖЕНИЯ КОСМОНАВТА ОТНОСИТЕЛЬНО КОСМИЧЕСКОГО АППАРАТА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ КОНТРОЛЯ ПЕРЕДВИЖЕНИЯ КОСМОНАВТА ОТНОСИТЕЛЬНО КОСМИЧЕСКОГО АППАРАТА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ КОНТРОЛЯ ПЕРЕДВИЖЕНИЯ КОСМОНАВТА ОТНОСИТЕЛЬНО КОСМИЧЕСКОГО АППАРАТА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 271-280 of 381 items.
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
Showing 271-280 of 356 items.
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
+ добавить свой РИД