×
13.01.2017
217.015.8752

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ КРАСНЫХ ШЛАМОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к извлечению скандия и редкоземельных элементов (РЗЭ) из красных шламов. Распульповку красного шлама проводят при рН=0,5-1. Пульпу подвергают механоактивации, сорбционное выщелачивание скандия ведут с органическим сорбентом, в поры которого импрегнирован эфир фосфорной кислоты. При этом сорбент перед десорбцией обрабатывают смесью растворов фтористоводородной и серной кислоты. Десорбцию скандия ведут суспензией фтористоводородной кислоты и фторида кальция с получением концентрата скандия и маточного раствора, который донасыщают по фтористоводородной кислоте и фториду кальция и возвращают на десорбцию скандия. Сорбционное выщелачивание обедненной по скандию пульпы РЗЭ ведут с катионитом с макропористой структурой, содержащим сульфокислотные функциональные группы. Перед десорбцией катионит обрабатывают раствором серной кислоты. Десорбцию катионита ведут раствором сульфата аммония, а концентрат РЗЭ осаждают насыщенным раствором карбонатной соли с одноименным катионом. Техническим результатом является повышение степени извлечения скандия и РЗЭ в конечный продукт при сокращении затрат на осуществление способа. 6 з.п. ф-лы, 1 ил., 5 табл., 5 пр.

Изобретение относится к металлургии цветных металлов, а именно к извлечению скандия и редкоземельных элементов (РЗЭ) из отходов глиноземного производства - красных шламов (КШ).

Известен способ извлечения скандия при переработке бокситов на глинозем, включающий выщелачивание КШ серной кислотой с концентрацией не менее 100 г/дм3, фильтрацию нерастворимого остатка, сорбцию скандия из фильтрата с использованием фосфорсодержащего сорбента КФП-12, последующую десорбцию скандия раствором карбоната аммония (NH4)2CO3 с концентрацией 120 г/дм2, осаждение концентрата скандия из раствора десорбции в виде труднорастворимого соединения раствором AlF3 (15 г/дм3) при 90°С. Извлечение скандия из раствора десорбции в концентрат - 97%. Сквозное извлечение скандия из исходного КШ составило 72.3% (А.с. СССР №1711499, Кл. С22В 59/00, опубл. 10.05.2000).

Недостатком известного способа является сложность его осуществления вследствие высоких затрат на регенты (приготовление концентрированного раствора серной кислоты, применение сорбента, крупнотоннажное производство которого отсутствует), а также высоких энерго- и трудозатрат при получении концентратов, связанных с фильтрацией и промывкой осадков. Кроме того, указанный способ не позволяет извлекать редкоземельные элементы.

Другой известный способ извлечения скандия из красных шламов глиноземного производства включает в себя сернокислотное выщелачивание скандия из красного шлама 10,0÷13,5%-ной в виброкавитационном режиме, фильтрацию пульпы с получением сернокислого раствора, сорбцию скандия из сернокислого раствора на фосфорнокислом амфолите, промывку сорбента 1,0 H раствором HCl, десорбцию скандия раствором Na2CO3 с концентрацией 150 г/дм3 с получением элюата, подкисление элюата и осаждение малорастворимых соединений скандия капринатом калия при pH 3,5-4,5 и выдержке 15-25 мин, фильтрацию осадка, промывку, сушку и прокалку осадка с получением скандийсодержащего концентрата с содержанием Sc2O3 22,5-25,0%. Сквозная степень извлечения скандия в концентрат составила 70,0-75,5% (Патент РФ №2484164, Кл. С22В 59/00, опубл. 10.06.2013).

Недостатком известного способа является применение редкого дорогостоящего реагента каприната калия и соляной кислоты для отмывки сорбента, что приводит к появлению хлоридных стоков, нетипичных для основного производства глинозема по способу Байера, и необходимости применения дорогостоящего коррозионно-стойкого оборудования.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ (прототип) извлечения скандия и РЗЭ из КШ, включающий распульповку красного шлама в растворе серной кислоты до pH=1,3-1,7 с получением пульпы КШ с соотношением Т:Ж=1:2-4, сорбционное выщелачивание скандия непосредственно из пульпы красного шлама сорбентом АФИ-21 или АФИ-22 в течение 1-6 часов при температуре 20°C с соотношением сорбент:пульпа красного шлама 1:20-50, с получением насыщенного по скандию сорбента с содержанием Sc2O3 0,2-0,23 мг/г и обедненной по скандию пульпы, где насыщенный по скандию сорбент подвергается десорбции раствором Na2CO3 с концентрацией 150 г/дм3 с получением десорбированного сорбента, который направляется повторно на сорбционное извлечение скандия и раствора десорбции скандия с содержанием Sc2O3 68-72 мг/дм3, который направляют на получение оксида скандия с использованием осадительных и экстракционных методов аффинажа. Технологическое извлечение скандия из красного шлама составляет 28,6%. Обедненная по скандию пульпа красного шлама направляется на сорбционное извлечение РЗЭ гелевым катионитом КУ-2-8 в течение 3-6 часов при температуре 20°С при соотношении катионит:пульпа 1:3÷10, с получением насыщенного по РЗЭ катионита (содержание Ln2O3 0,9-1,0 мг/г) и отработанной пульпы красного шлама. Насыщенный по РЗЭ катионит подвергается десорбции раствором серной кислоты и сульфата натрия (30 г/дм3 H2SO4+100 г/дм3 Na2SO4) с получением десорбированного катионита, который возвращается на сорбционное извлечение РЗЭ и раствора десорбции РЗЭ, из которого осаждают РЗЭ растворами NaOH или NH4OH с получением чернового концентрата с содержанием РЗЭ не более 0,2%, а отработанная пульпа красного шлама направляется на утилизацию. Сквозное извлечение РЗЭ из КШ не превышает 50% [Смирнов Д.И., Молчанова Т.В., Водолазов Л.И., Пеганов В.А. Сорбционное извлечение редкоземельных элементов, иттрия и алюминия из красных шламов // Цветные металлы, №8, 2002, с. 64-69].

Недостатком данного способа переработки КШ является то, что хотя он и обеспечивает совместное извлечение скандия и РЗЭ и исключает процедуру фильтрации КШ за счет проведения процесса сорбции непосредственно в пульпе КШ, использование сорбента АФИ-22, содержащего в качестве функциональных групп эфиры фосфоновой кислоты, неэффективно, вследствие малой емкости по скандию сорбентов, содержащих активный компонент такой природы. Использование для извлечения РЗЭ катионита гелевой структуры, содержащего сульфокислотные функциональные группы, неэффективно вследствие конкурентной сорбции макрокомпонентов красного шлама железа (III) и алюминия. Стадии осаждения концентрата скандия и доведения концентрата РЗЭ с таким относительно низким содержанием РЗЭ до товарной продукции являются трудоемкими и энергоемкими процессами.

В основу изобретения положена задача, заключающаяся в разработке способа извлечения скандия и РЗЭ из красного шлама, обеспечивающего увеличение степени извлечения скандия и РЗЭ из красного шлама в конечный продукт.

При этом техническим результатом заявляемого изобретения является повышение степени извлечения скандия и РЗЭ в конечный продукт при сокращении затрат на осуществление способа.

Заявляемый технический результат достигается тем, что в способе извлечения скандия и редкоземельных элементов (РЗЭ) из красных шламов, согласно изобретению, включающем распульповку красного шлама раствором серной кислоты, сорбционное выщелачивание скандия из пульпы красного шлама сорбентом с получением насыщенного по скандию сорбента и обедненной по скандию пульпы, десорбцию скандия с получением десорбированного сорбента и раствора десорбции скандия, сорбционное выщелачивание из обедненной по скандию пульпы РЗЭ катионитом, десорбцию насыщенного по РЗЭ катионита с получением десорбированного катионита, и раствора десорбции РЗЭ, из которого осаждают концентрат РЗЭ, распульповку красного шлама проводят при рН=0,5-1, пульпу перед стадией сорбционного выщелачивания скандия подвергают механоактивации, сорбционное выщелачивание скандия ведут органическим сорбентом, в поры которого импрегнирован эфир фосфорной кислоты, при этом насыщенный по скандию сорбент перед десорбцией подвергают обработке смесью растворов фтористоводородной и серной кислоты, десорбцию скандия ведут суспензией фтористоводородной кислоты и фторида кальция с получением концентрата скандия и маточного раствора осаждения концентрата скандия, который донасыщают по фтористоводородной кислоте и фториду кальция и возвращают на десорбцию скандия, сорбционное выщелачивание РЗЭ из обедненной по скандию пульпы ведут катионитом с макропористой структурой, содержащим сульфокислотные функциональные группы, при этом перед десорбцией насыщенный по РЗЭ катионит подвергают обработке раствором серной кислоты, десорбцию насыщенного по РЗЭ катионита ведут раствором сульфата аммония, а концентрат РЗЭ осаждают насыщенным карбонатной солью раствором с одноименным катионом.

Способ дополняют частные отличительные признаки, способствующие достижению указанного технического результата.

Концентрация фтористоводородной кислоты в смеси растворов при обработке насыщенного по скандию сорбента перед десорбцией составляет 1÷15 г/дм3, а концентрация серной кислоты - 100÷300 г/дм3.

Для десорбции скандия используют суспензию с содержанием 10÷100 г/дм3 фтористоводородной кислоты и 1-10 г/дм3 фторида кальция.

Перед десорбцией насыщенный по РЗЭ катионит подвергают обработке раствором серной кислоты с концентрацией 10÷100 г/дм3.

Для десорбции насыщенного по РЗЭ катионита используют раствор сульфата аммония с концентрацией 100÷400 г/дм3.

В качестве насыщенного карбонатной солью раствора для осаждения концентрата РЗЭ используют раствор карбоната аммония, гидрокарбоната аммония или их смеси.

Осаждение концентрата РЗЭ ведут при pH 6÷6,5, а маточный раствор осаждения концентрата РЗЭ повторно направляют на десорбцию.

Известно, что скандий в КШ концентрируется в основном в тяжелой железо-титановой минеральной фракции и может быть переведен в раствор только при ее значительном растворении. Эти минералы не растворимы в слабых минеральных кислотах. Для интенсификации процесса растворения железо-титановых минералов необходимо провести их механоактивацию.

Изменение интервала растворения КШ больше или меньше значений рН=0,5-1 нецелесообразно, т.к. именно в этом интервале pH сорбент, в поры которого импрегнирован эфир фосфорной кислоты, проявляет максимальную емкость по скандию. Кроме того, уменьшение значения pH ниже данного интервала приводит к активному растворению оксида кремния, содержащегося в КШ. Это приводит к гелеобразованию пульпы КШ, что затрудняет процесс его переработки. Увеличение значения pH выше данного интервала не позволяет эффективно выщелачивать скандий из КШ.

Объяснением избирательности поглощения РЗЭ макропористыми катионитами с сульфокислотными функциональными группами по сравнению с их гелевыми аналогами является изменение степени гидратации ионов при их переходе из фазы разбавленного внешнего раствора в концентрированный ионитный раствор. Макропористая структура катионита способствуют большей степени дегидратации в катионите сильнее гидратированных ионов железа (III) и Al, являющихся макрокомпонентами КШ в растворах с рН=0.5÷1 с затратой энергии на дегидратацию. Это приводит к смещению химического равновесия, определяющему переход этих ионов в раствор из фазы ионита, в отличие от ионов РЗЭ, менее подверженных гидролизу в рассматриваемом диапазоне pH.

Кроме того, набухшие в воде гелевые катиониты значительно изменяются в объеме при контакте с концентрированными растворами электролитов. Изменение объема слоя катионита снижает эффективность процесса разделения и сокращает срок эксплуатации катионита.

Введение предварительных обработок сорбента и катионита серной кислотой перед операциями десорбции позволяет отделить скандий от большинства сопутствующих макрокомпонентов. Это приводит к более эффективной последующей переработке растворов десорбции с получением более богатых по скандию концентратов.

Проведение десорбции скандия суспензией, содержащей 10÷100 г/дм3 фтористоводородной кислоты и 1-10 г/дм3 фторида кальция позволяет сразу, за одну операцию, в процессе десорбции, получать концентрат скандия, за счет соосаждения с фторидом кальция. После фильтрации полученной суспензии, раствор десорбции донасыщают по фтористоводородной кислоте и фториду кальция и направляют на повторную десорбцию, что позволяет работать с фторсодержащими средами, исключая образование отходов.

Проведение десорбции РЗЭ раствором сульфата аммония позволяет боле эффективно вести процесс десорбции, т.к. сродство катионита с сульфокислотными функциональными группами к одновалентным ионам уменьшается в ряду NH4+>Na+>K+>H+. Кроме того, использование аммонийных солей как в процессе десорбции, так и в процессе осаждения концентрата РЗЭ, позволяет исключить образование отходов и работать в замкнутом цикле.

Принципиальная технологическая схема извлечения скандия и РЗЭ представлена на фигуре. Осуществление заявляемого способа и его преимущество перед прототипом подтверждается следующими примерами.

Пример 1. Навеску КШ в количестве 100 г распульповывали в растворе серной кислоты при рН=1 и соотношении Т:Ж в пульпе КШ=1:3, помещали в бисерную лабораторную мельницу и измельчали (механоактивация) в течение 10 минут. Параллельно КШ распульповывали в растворе серной кислоте при рН=1 и соотношении Т:Ж в пульпе КШ=1:3 без проведения стадии измельчения (механоактивации). В таблице 1 приведены результаты исследований по влиянию механоактивации на степень перевода скандия в жидкую часть пульпы КШ

Как видно из таблицы 1, применение стадии механоактивации позволяет повысить степень извлечения скандия с 47 до 57%, степень извлечения РЗМ - с 44 до 51%.

Пример 2. Навеску сорбента, в поры которого импрегнированы эфиры фосфоновой кислоты, и навеску сорбента, в поры которого импрегнированы эфиры фосфорной кислоты, в количестве 1 грамм каждый помещали в реактора и заливали их пульпой КШ, которая была подвергнута стадии механоактивации, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С для каждого. В таблице 2 приведены результаты исследований по влиянию природы активных групп сорбента на степень сорбционного извлечения скандия из пульпы КШ.

Пример 3. Навески сорбентов, в поры которого импрегнированы эфиры фосфорной кислоты, в количестве 1 грамм каждый, помещали в реактор и заливали их пульпой КШ, которая была подвергнута стадии механоактивации, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при различных pH и температуре 20°С. В таблице 3 приведены результаты исследований по влиянию pH на степень сорбционного извлечения скандия из пульпы КШ.

Как видно из таблицы 3, максимальная степень извлечения скандия достигается при pH 0,5÷1.

Пример 4. Навеску макропористого катионита, содержащего сульфокислотные функциональные группы, и навеску его гелевого аналога в количестве 5 г каждый помещали в реактора и заливали их пульпой КШ, которая была подвергнута стадии механоактивации, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С для каждого. В таблице 4 приведены результаты исследований по влиянию природы активных групп сорбента на степень сорбционного извлечения скандия из пульпы КШ.

Пример 5. Навеску сорбента, в поры которого импрегнированы эфиры фосфорной кислоты, в количестве 1 грамм, помещали в реактор и заливали ее пульпой КШ, которая предварительно была подвергнута стадии механоактивации в бисерной мельнице в течение 10 минут, в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С. Затем разделяли пульпу КШ и насыщенный по скандию сорбент на сите. Насыщенный по скандию сорбент помещали в пластиковую колонку диаметром 10 мм и высотой 100 мм и пропускали через нее раствор, содержащий 10 г/дм3 плавиковой кислоты и серной кислоты с концентрацией 200 г/дм3. После обработки раствором сорбент извлекали из колонки, помещали в реактор и заливали суспензией, содержащей 10 г/дм3 фтористоводородной кислоты и 1-10 г/дм3 фторида кальция. Полученную смесь разделяли на сите. Сорбент оставался на сите, а суспензию направляли на фильтрацию. Отфильтрованный осадок скандиевого концентрата анализировали на содержание скандия и проводили расчет сквозной степени извлечения скандия.

Далее навеску макропористого катионита в количестве 5 г помещали в реактор и заливали ее обедненной по скандию пульпой КШ в количестве 50 миллилитров при соотношении Т:Ж=1:3 и выдерживали при перемешивании в течение 6 часов при рН=1 и температуре 20°С. Затем разделяли отработанную пульпу КШ и насыщенный по РЗЭ катионит на сите. Насыщенный по РЗЭ катионит помещали в пластиковую колонку диаметром 10 мм и высотой 100 мм и пропускали через нее раствор, содержащий 50 г/дм серной кислоты. После пропускания раствора, в той же колонке, проводили десорбцию насыщенного по РЗЭ катионита раствором сульфата аммония с концентрацией 300 г/дм3. Из раствора десорбции проводили осаждение концентрата РЗЭ путем добавления насыщенного раствора карбоната аммония до рН=6,3. Полученную суспензию фильтровали. Отфильтрованный осадок - концентрат РЗЭ анализировали на содержание РЗЭ и проводили расчет сквозной степени извлечения РЗЭ.

В таблице 5 приведены результаты исследований по степени извлечения скандия и РЗЭ из КШ.

Таким образом, использование заявляемого способа извлечения скандия и РЗЭ позволяет создать технологию, предусматривающую сорбционное извлечение скандия из пульпы КШ с большей степенью извлечения и с получением более богатого по скандию концентрата, технологическое извлечение скандия из красного шлама составляет не менее 60% и сорбционное извлечение РЗЭ с большей степенью извлечения и с получением более богатого по РЗЭ концентрата (степень извлечения РЗЭ составила не менее 60%).


СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ КРАСНЫХ ШЛАМОВ
Источник поступления информации: Роспатент

Showing 51-60 of 251 items.
20.05.2015
№216.013.4b93

Способ определения компонентного состава и криолитового отношения твердых проб калийсодержащего электролита алюминиевого производства методом рфа

Изобретение относится к способу определения компонентного состава и криолитового отношения калийсодержащего электролита и может быть использовано в цветной металлургии, а именно при технологическом контроле состава электролита методом количественного рентгенофазового анализа. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002550861
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.546b

Конструкция токоотводов катода алюминиевого электролизера

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия из криолит-глиноземных расплавов, и может быть использовано в конструкции токоотводов катодного устройства. В алюминиевом электролизере вертикальные металлические катодные токоотводы, проводящие...
Тип: Изобретение
Номер охранного документа: 0002553132
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5470

Устройство для сбора и удаления газов из алюминиевого электролизера

Изобретение относится к устройствам для сбора и удаления газов на электролизерах с односторонним газоотсосом при поперечном их расположении в корпусе. Устройство содержит балку-коллектор, имеющую верхний и нижний пояса жесткости и двойные вертикальные стенки, между которыми в верхней части...
Тип: Изобретение
Номер охранного документа: 0002553137
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5478

Способ футеровки катодного устройства электролизера неформованными материалами

Изобретение относится к способу футеровки катодного устройства при монтаже катодных устройств электролизеров для производства первичного алюминия. Способ включает засыпку порошкообразного материала в катодный кожух электролизера, разравнивание его с помощью рейки, укрытие засыпанного материала...
Тип: Изобретение
Номер охранного документа: 0002553145
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.5843

Способ получения глинозема

Изобретение относится к кислотным способам получения глинозема и может быть использовано при переработке низкосортного алюминийсодержащего сырья. Способ получения глинозема включает обжиг сырья, обработку его соляной кислотой, высаливание хлорида алюминия путем насыщения осветленного хлоридного...
Тип: Изобретение
Номер охранного документа: 0002554136
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5f76

Способ получения высокопрочного гипсового вяжущего

Изобретение относится к производству строительных материалов и может быть использовано на промышленных предприятиях, выпускающих кладочные и отделочные строительные смеси, в состав которых входят гипсовые вяжущие. Технический результат заключается в сокращении продолжительности процесса...
Тип: Изобретение
Номер охранного документа: 0002555979
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.623f

Способ и система управления электротехнологическими режимами восстановительной плавки технического кремния в руднотермических электрических печах

Изобретение относится к области металлургии, а именно к получению металлов и сплавов в руднотермических электрических печах. Способ управления в руднотермической электрической печи, включающей один или три печных трансформатора с вторичными обмотками, соединенными с электродами по схеме...
Тип: Изобретение
Номер охранного документа: 0002556698
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6d99

Устройство для непрерывного литья, прокатки и прессования катанки

Изобретение относится к металлургии и может быть использовано для получения сплошных и полых пресс-изделий из металлов и сплавов. Устройство содержит печь-миксер 1, закрепленные на валах валок 3 с ручьем и валок 4 с выступом, образующие рабочий калибр 5 и имеющие охлаждаемые каналы 8, матрицу 6...
Тип: Изобретение
Номер охранного документа: 0002559615
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.768f

Система автоматической подачи сырья в электролизеры с самообжигающимися анодами

Изобретение относится к системе автоматической подачи сырья в алюминиевый электролизер с верхним токоподводом и самообжигающимся анодом. Система содержит магистральный аэрожелоб, бункер модуля АПГ, систему воздухоснабжения, содержащую радиальные вентиляторы высокого давления, задвижки,...
Тип: Изобретение
Номер охранного документа: 0002561940
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7782

Способ получения скандиевого концентрата из красного шлама

Изобретение относится к области металлургии редких металлов, в частности к способу извлечения скандия из красных шламов - отходов глиноземного производства. Способ включает многократное последовательное выщелачивание красного шлама карбонатным раствором при пропускании через пульпу...
Тип: Изобретение
Номер охранного документа: 0002562183
Дата охранного документа: 10.09.2015
Showing 51-60 of 176 items.
10.06.2015
№216.013.5470

Устройство для сбора и удаления газов из алюминиевого электролизера

Изобретение относится к устройствам для сбора и удаления газов на электролизерах с односторонним газоотсосом при поперечном их расположении в корпусе. Устройство содержит балку-коллектор, имеющую верхний и нижний пояса жесткости и двойные вертикальные стенки, между которыми в верхней части...
Тип: Изобретение
Номер охранного документа: 0002553137
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5478

Способ футеровки катодного устройства электролизера неформованными материалами

Изобретение относится к способу футеровки катодного устройства при монтаже катодных устройств электролизеров для производства первичного алюминия. Способ включает засыпку порошкообразного материала в катодный кожух электролизера, разравнивание его с помощью рейки, укрытие засыпанного материала...
Тип: Изобретение
Номер охранного документа: 0002553145
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.5843

Способ получения глинозема

Изобретение относится к кислотным способам получения глинозема и может быть использовано при переработке низкосортного алюминийсодержащего сырья. Способ получения глинозема включает обжиг сырья, обработку его соляной кислотой, высаливание хлорида алюминия путем насыщения осветленного хлоридного...
Тип: Изобретение
Номер охранного документа: 0002554136
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5f76

Способ получения высокопрочного гипсового вяжущего

Изобретение относится к производству строительных материалов и может быть использовано на промышленных предприятиях, выпускающих кладочные и отделочные строительные смеси, в состав которых входят гипсовые вяжущие. Технический результат заключается в сокращении продолжительности процесса...
Тип: Изобретение
Номер охранного документа: 0002555979
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.623f

Способ и система управления электротехнологическими режимами восстановительной плавки технического кремния в руднотермических электрических печах

Изобретение относится к области металлургии, а именно к получению металлов и сплавов в руднотермических электрических печах. Способ управления в руднотермической электрической печи, включающей один или три печных трансформатора с вторичными обмотками, соединенными с электродами по схеме...
Тип: Изобретение
Номер охранного документа: 0002556698
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6d99

Устройство для непрерывного литья, прокатки и прессования катанки

Изобретение относится к металлургии и может быть использовано для получения сплошных и полых пресс-изделий из металлов и сплавов. Устройство содержит печь-миксер 1, закрепленные на валах валок 3 с ручьем и валок 4 с выступом, образующие рабочий калибр 5 и имеющие охлаждаемые каналы 8, матрицу 6...
Тип: Изобретение
Номер охранного документа: 0002559615
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.768f

Система автоматической подачи сырья в электролизеры с самообжигающимися анодами

Изобретение относится к системе автоматической подачи сырья в алюминиевый электролизер с верхним токоподводом и самообжигающимся анодом. Система содержит магистральный аэрожелоб, бункер модуля АПГ, систему воздухоснабжения, содержащую радиальные вентиляторы высокого давления, задвижки,...
Тип: Изобретение
Номер охранного документа: 0002561940
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7782

Способ получения скандиевого концентрата из красного шлама

Изобретение относится к области металлургии редких металлов, в частности к способу извлечения скандия из красных шламов - отходов глиноземного производства. Способ включает многократное последовательное выщелачивание красного шлама карбонатным раствором при пропускании через пульпу...
Тип: Изобретение
Номер охранного документа: 0002562183
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77f9

Способ получения глинозема из низкосортного алюминийсодержащего сырья

Изобретение относится к металлургии, в частности к кислотным способам получения глинозема, и может быть использовано при переработке низкосортного алюминийсодержащего сырья. Способ получения глинозема включает обработку алюминийсодержащего сырья соляной кислотой с образованием хлоридной пульпы,...
Тип: Изобретение
Номер охранного документа: 0002562302
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ac2

Способ выделения церия из нитратных растворов, содержащих сумму редкоземельных элементов

Изобретение может быть использовано при переработке концентратов редкоземельных металлов. Для выделения церия из нитратного раствора, содержащего сумму редкоземельных элементов, церий окисляют до четырехвалентного состояния пероксидом водорода и осаждают аммиаком путем одновременного введения...
Тип: Изобретение
Номер охранного документа: 0002563015
Дата охранного документа: 10.09.2015
+ добавить свой РИД