×
13.01.2017
217.015.85d2

Результат интеллектуальной деятельности: ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ

Вид РИД

Изобретение

№ охранного документа
0002603129
Дата охранного документа
20.11.2016
Аннотация: Изобретение относится к детектору излучения, в частности электромагнитного излучения большой мощности. Детектор содержит секцию преобразования, включающую катод (3), для преобразования излучения (Р), падающего на секцию преобразования, в электроны (Е) с помощью фотоэлектрического эффекта. Детектор дополнительно включает газовый электронный умножитель (4) для создания электронной лавины из электронов (Е), которые создаются в секции преобразования и входят в газовый электронный умножитель (4), при этом газовый электронный умножитель (4) содержит первый электрод (5), диэлектрический слой (6) и второй электрод (7), при этом первый электрод (5) расположен на первой стороне диэлектрического слоя (6) вблизи секции преобразования, и второй электрод (7) расположен на второй стороне диэлектрического слоя (6), противоположной первой стороне. Газовый электронный умножитель (4) содержит несколько отверстий (9), заполненных газом, при этом указанные отверстия (9) проходят через первый электрод (5), диэлектрический слой (6) и второй электрод (7). Кроме того, детектор включает детекторный анод (8) вблизи второго электрода (7) для обнаружения лавины электронов. Детекторный анод (8) проходит у каждого отверстия (9) газового электронного умножителя (4) от второго электрода (7) над отверстием (9) так, что отверстие на одной стороне полностью закрыто детекторным анодом (8). Положение детекторного анода (8) смещено вниз относительно плоскости второго электрода (7), причем одно или более отверстий (9) проходят через детекторный анод (8). Технический результат - повышение точности измерения. 15 з.п. ф-лы, 5 ил.

Изобретение относится к детектору излучения, в частности электромагнитного излучения большой мощности.

Для обнаружения излучения из уровня техники известно много различных типов детекторов. Для обнаружения электромагнитного излучения большой мощности широко используются сцинтилляционные детекторы, содержащие сцинтилляторный кристалл и фотоэлектронный умножитель, в различных областях техники, например в медицинском оборудовании с формированием изображения или для геофизических исследований в нефтяной и газовой промышленности. В сцинтилляционном детекторе излучение падает на сцинтилляторный кристалл, преобразующий излучение в свет, падающий на фотокатод. Фотокатод является частью фотоэлектронного умножителя, содержащего множество динодов в стеклянной оболочке. За счет фотоэлектрического эффекта свет, падающий на фотокатод, вызывает эмиссию первичных электронов внутри трубки фотоэлектронного умножителя. Электроны ускоряются в направлении динодов в трубке, что приводит к образованию каскадов вторичных электронов, которые обнаруживаются в качестве выходного сигнала. Сцинтилляционные детекторы являются относительно громоздкими за счет трубки фотоэлектронного умножителя, которая имеет длину несколько сантиметров. Кроме того, пространственное разрешение этих детекторов относительно низкое.

Другой тип детектора, известного из уровня техники, относится к так называемым газовым электронным умножителям, в которых электроны, создаваемые за счет фотоэлектрического эффекта, входят в соответствующие отверстия, заполненные газом. Внутри отверстий имеется сильное электрическое поле, ускоряющее входящие в отверстия электроны, что приводит к образованию вторичных электронов за счет соударения электронов с атомами/молекулами газа. Таким образом, создается лавина электронов.

Детектор излучения, включающий газовый электронный умножитель, раскрыт в патенте US 6011265. В этом детекторе анод детектора, расположенный на расстоянии от газового электронного умножителя, используется для обнаружения электронной лавины. Газовый электронный умножитель содержит изолирующий материал с соответствующими отверстиями в нем и два электрода, расположенных на изолирующем материале, которые создают электрическое поле внутри отверстий. Недостатком детектора является то, что не все электроны лавины электронов могут быть обнаружены с помощью анода детектора, поскольку некоторые электроны разряжаются на электроде газового электронного умножителя вблизи анода детектора.

Задачей изобретения является создание детектора излучения компактного размера, который обеспечивает возможность точного измерения.

Эта задача решена с помощью детектора согласно пункту 1 формулы изобретения. Предпочтительные варианты выполнения изобретения указаны в зависимых пунктах формулы изобретения.

Детектор согласно изобретению предназначен для обнаружения излучения и, в частности, электромагнитного излучения высокой энергии. Здесь и в последующем под электромагнитным излучением высокой энергии понимается излучение от 10 кэВ до 100 МэВ и больше, в частности к рентгеновскому излучению и гамма-излучению.

Детектор согласно изобретению содержит секцию преобразования, включающую катод. Эта секция преобразует подлежащее обнаружению излучение, падающее на секцию преобразования, в электроны с помощью фотоэлектрического эффекта. Кроме того, детектор включает газовый электронный умножитель для создания лавины электронов, которые создаются в секции преобразования и входят в газовый электронный умножитель. Газовый электронный умножитель включает первый электрод, диэлектрический слой и второй электрод. Первый электрод и второй электрод предпочтительно выполнены из меди. Кроме того, диэлектрический материал предпочтительно выполнен из каптона. Первый электрод расположен на первой стороне диэлектрического слоя вблизи секции преобразования, и второй электрод расположен на второй стороне диэлектрического слоя, которая противоположна первой стороне. Газовый электронный умножитель содержит несколько отверстий и, в частности, множество отверстий, заполненных газом (например, неоном), при этом указанные отверстия проходят через первый электрод, диэлектрический слой и второй электрод. Дополнительно к этому, детектор содержит анод детектора вблизи второго электрода для обнаружения лавины электронов.

Детектор согласно изобретению характеризуется тем, что детекторный анод проходит у каждого отверстия от второго электрода над отверстием так, что отверстие полностью закрыто на одной стороне детекторным анодом. Изобретение основывается на понимании того, что за счет закрывания отверстий газового электронного умножителя детекторным анодом не теряются электроны электронной лавины за счет разряда на втором электроде. Поэтому может быть достигнуто более точное измерение излучения с помощью детектора. Кроме того, детектор согласно изобретению имеет намного более компактный размер по сравнению со сцинтилляционными детекторами с трубками фотоэлектронного умножителя, поскольку толщина газового электронного умножителя обычно лежит в диапазоне нескольких микрон по сравнению с несколькими сантиметрами фотоэлектронного умножителя. Кроме того, пространственное разрешение газового электронного умножителя может быть значительно выше по сравнению со сцинтилляционными детекторами, включающими трубки фотоэлектронного умножителя.

В одном частном варианте выполнения детектора секция преобразования содержит фотокатод и сцинтилляционный материал, например NaI (Tl), расположенный на стороне фотокатода, обращенной к входящему в секцию преобразования излучению. Сцинтилляционный материал преобразует падающее излучение в свет. Фотоны этого света вызывают эмиссию электронов из фотокатода за счет фотоэлектрического эффекта. В результате, фотокатод может быть расположен вблизи отверстий газового электронного умножителя, что уменьшает размер детектора. Однако, в одном варианте выполнения, секция преобразования может содержать обычный катод и газовый объем, так что излучение проходит через катод и вызывает эмиссию электронов из атомов/молекул газа в газовом объеме за счет фотоэлектрического эффекта.

Фотокатод в указанном выше варианте выполнения может быть расположен, например, непосредственно на первом электроде (т.е. в контакте с ним). Однако может иметься также зазор, заполненный газом, между фотокатодом и первым электродом.

В особенно предпочтительном варианте выполнения изобретения детекторный анод и второй электрод образуют интегральный электрод, что упрощает конструкцию детектора.

В другом варианте выполнения изобретения детекторный анод проходит у одного или более отверстий и, в частности, у каждого отверстия в плоскости или параллельно плоскости второго электрода.

В другом варианте выполнения детекторный анод имеет одно или более отверстий и, в частности, у каждого отверстия имеет U-образное поперечное сечение вдоль плоскости, перпендикулярной второму электроду. Кроме того, детекторный анод может иметь одно или более отверстий и, в частности, у каждого отверстия полуэллиптическое поперечное сечение. За счет использования U-образного или полуэллиптического поперечного сечения увеличивается детекторная поверхность анода.

Отверстия в газовом электронном умножителе могут иметь различные формы. В одном варианте выполнения по меньшей мере одно отверстие и, в частности, каждое отверстие имеет цилиндрическую форму. В другом варианте выполнения по меньшей мере одно отверстие и, в частности, каждое отверстие имеет форму усеченного конуса от первого электрода в направлении второго электрода. Кроме того, по меньшей мере одно отверстие и, в частности, каждое отверстие могут иметь форму усеченного конуса от первого и второго электрода в направлении внутреннего пространства отверстия.

Для достижения высокого пространственного разрешения максимальный диаметр каждого отверстия составляет между 10 и 100 мкм, и/или расстояние между центрами соседних отверстий на виде сверху на первый электрод составляет между 10 и 100 мкм.

Детектор согласно изобретению можно использовать в различных областях техники. В одном предпочтительном варианте выполнения детектор является детектором для обнаружения излучения в медицинском устройстве, в частности в компьютерном томографе. Другими словами, изобретение относится также к компьютерному томографу, содержащему детектор согласно изобретению. Кроме того, детектор согласно изобретению можно использовать в каротажном устройстве, используемом для регистрации геологической формации, через которую проходит скважина. Поэтому изобретение относится также к каротажному устройству, включающему указанный выше детектор. Изобретение можно использовать также в других областях техники. Например, детектор согласно изобретению можно использовать в ядерной физике для изучения спектров радиоактивных нуклидов, для измерения времени существования атомных ядер, в геологии (анализ радиоактивности, поиск минералов, определение возраста породы), в биологии, дефектоскопии и т.п.

Ниже приводится описание вариантов выполнения изобретения со ссылками на прилагаемые чертежи, на которых изображено:

фиг. 1 - разрез ячейки детектора излучения высокой энергии согласно одному варианту выполнения изобретения;

фиг. 2 - разрез по линии II-II на фиг. 1 детектора, имеющего множество ячеек, показанных на фиг. 1;

фиг. 3 - разрез части ячейки детектора согласно второму варианту выполнения изобретения;

фиг. 4 - разрез части ячейки детектора согласно третьему варианту выполнения изобретения; и

фиг. 5 - разрез части ячейки детектора согласно четвертому варианту выполнения изобретения.

Ниже приводится описание изобретения применительно к сцинтилляционному детектору, включающему множество ячеек для обнаружения электромагнитного излучения высокой энергии и, в частности, рентгеновского излучения и/или гамма-излучения.

На фиг. 1 показана в разрезе ячейка детектора согласно первому варианту выполнения изобретения. Детектор включает сцинтилляционный материал 1, который преобразует подлежащее обнаружению излучение высокой энергии (обозначено стрелкой Р1) в свет (обозначен стрелкой Р2), т.е. в электромагнитное излучение с другой длиной волны, чем падающее излучение. В зависимости от сцинтилляционного материала, свет, создаваемый в материале, может лежать внутри видимого спектра или в спектре, соседнем с видимым спектром. В предпочтительном варианте выполнения используется NaI (Tl) (иодид натрия, активированный таллием) в качестве сцинтилляционного кристалла. Оптически прозрачное окно 2 (предпочтительно выполненное из соответствующего стекла) расположено у дна этого сцинтилляционного кристалла.

Создаваемый в сцинтилляционном кристалле свет достигает через оптическое окно 2 фотокатод 3, в результате чего за счет фотоэлектрического эффекта из фотокатода эмитируются электроды Е. Верхняя часть детектора, содержащая сцинтиллятор 1, оптическое окно 2 и фотокатод 3, представляют вариант выполнения секции преобразования, определенной в пункте 1 формулы изобретения. В другом варианте выполнения эта секция преобразования может иметь другую структуру, например, иметь катод и зазор, заполненный газом, так что фотоэлектрический эффект основан на взаимодействии между излучением, проходящим через катод, и электронами газа в газовом объеме.

Под секцией преобразования на фиг. 1 расположен газовый электронный умножитель 4. Этот умножитель включает первый электрод 5 (предпочтительно выполненный из меди), диэлектрический материал 6 (предпочтительно выполненный из каптона) и второй электрод 7 (предпочтительно выполненный из меди). Цилиндрическое отверстие 9 образовано через электроды 5 и 7 и диэлектрический материал 6. Отверстие заполнено газом, например неоном. Подходящее напряжение (например, 100 В) приложено между первым и вторым электродами, так что существует зона сильного электрического поля внутри отверстия 9. Поэтому электрон Е, входящий в отверстие 9, ускоряется и соударяется с атомами/молекулами газа с образованием вторичных электронов, которые, в свою очередь, соударяются с другими атомами и т.д. В результате, создается электронная лавина. Эта лавина обнаруживается с помощью детекторного анода 8, расположенного на дне отверстия 9. Подходящий электрический потенциал имеется между этим анодом и катодом 3. В противоположность уровню техники, детекторный анод 8 не расположен на расстоянии от второго электрода 7. Вместо этого электрод 7 и детекторный анод 8 образуют интегральный электрод. Это имеет то преимущество, что все электроны лавины, генерированные в отверстии 9, обнаруживаются с помощью детекторного анода 8.

В противоположность этому, в детекторе согласно уровню техники штриховые линии L, показанные на фиг. 1, образуют нижнюю часть электрода 7, где детекторный анод 8 расположен на расстоянии от электрода 7. Вследствие этого не все лавинные электроны достигают детекторного анода 8, поскольку некоторые электроны у края отверстия могут ударяться в дно электрода 7 за счет линий электрического поля, исходящих из электрода 7. Это приводит к ошибкам измерения, поскольку не вся энергия электронной лавины улавливается анодом. Эта проблема решена с помощью показанного на фиг. 1 детектора, поскольку дно отверстия 9 закрыто, так что все электроны электронной лавины обнаруживаются анодом 8. Поэтому показанная на фиг. 1 ячейка детектора обеспечивает более точное измерение энергии и интенсивности падающего излучения.

В показанном на фиг. 1 варианте выполнения фотокатод 3 расположен непосредственно на верхнем электроде 5 (т.е. в контакте с ним). Однако может также существовать небольшой зазор между фотокатодом 3 и электродом 5, так что газ проходит в детекторе между всеми отверстиями 9 газового электронного умножителя 4.

На фиг. 2 показан разрез по линии II-II на фиг. 1 детектора, включающего множество показанных на фиг. 1 ячеек. Как показано на фиг. 2, несколько отверстий 9 выполнены через верхний электрод 5 в детекторе. Для ясности лишь некоторые из соседних отверстий обозначены позицией 9. На фиг. 2 показана лишь часть поверхности обнаружения детектора. Другими словами, детектор включает намного больше отверстий, чем показано на фиг. 2, например несколько тысяч отверстий. Размер детекторной поверхности, включающей отверстия, предпочтительно лежит в диапазоне нескольких сантиметров (например, 10 см × 10 см). Для достижения высокого пространственного разрешения расстояние D между соседними отверстиями предпочтительно лежит в диапазоне нескольких микрон, например между 10 и 100 мкм. Диаметр d отверстий предпочтительно лежит в том же диапазоне, т.е. между 10 и 100 мкм. Пространственное разрешение показанного на фиг. 2 детектора намного выше, чем пространственное разрешение, которое может быть достигнуто с помощью обычных сцинтилляционных детекторов с использованием трубок фотоэлектронного умножителя. Другим преимуществом детектора по сравнению с детекторами, включающими трубки фотоэлектронного умножителя, является то, что размер детектора намного меньше. Протяженность ячейки детектора на фиг. 1 в вертикальном направлении лежит в диапазоне нескольких микрон, в то время как трубка фотоэлектронного умножителя обычно имеет длину в несколько сантиметров.

В показанном на фиг. 1 варианте выполнения анод 8 выполнен в виде плоского электрода, параллельного второму электроду 7. Кроме того, отверстие 9 имеет цилиндрическую форму. Однако возможны различные формы детекторного анода и отверстия, как показано в вариантах выполнения на фиг. 3-5. На этих фигурах показаны поперечные сечения части ячеек детектора, образующих газовый электронный умножитель. Часть ячеек наверху этого умножителя соответствуют структуре, показанной на фиг. 1. На фиг. 3-5 компоненты, соответствующие фиг. 1, обозначены теми же позициями.

На фиг. 3 показан вариант выполнения, в котором отверстие 9 конически сужается от первого электрода 5 в направлении второго электрода 7. Кроме того, детекторный анод 8 лежит в плоскости второго электрода 7, так что с помощью анода 8 и электрода 7 образуется в целом плоский электрод. Показанный на фиг. 3 вариант выполнения имеет очень компактный размер.

На фиг. 4 показан вариант выполнения, в котором отверстие 9 газового электронного умножителя конически сужается как от верхнего электрода 5, так и от нижнего электрода 7 в направлении середины отверстия, где отверстие имеет наименьший диаметр. Кроме того, положение детекторного анода 8 смещено вниз, так что образуется U-образная форма детекторного анода. Этот вариант выполнения увеличивает поверхность обнаружения анода 8, что приводит к улучшенной способности обнаружения. Кроме того, форма отверстия с поверхностями в виде усеченного конуса увеличивает электрическое поле внутри отверстия.

На фиг. 5 показан другой вариант выполнения ячейки детектора. Как и на фиг. 4, отверстие 9 имеет поверхности в виде усеченного конуса. В противоположность фиг. 4, анод 8 имеет полуэллиптическое поперечное сечение, что также приводит к большей площади детекторного анода.

Указанные выше варианты выполнения имеют многие преимущества. В частности, измерения детектора более точные, поскольку не происходит потеря электронов в электронной лавине, создаваемой с помощью газового электронного умножителя. Кроме того, размер детектора намного меньше, а пространственное разрешение намного больше по сравнению со сцинтилляционными детекторами с использованием фотоэлектронного умножителя.


ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
ДЕТЕКТОР ИЗЛУЧЕНИЯ, В ЧАСТНОСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ БОЛЬШОЙ МОЩНОСТИ
Источник поступления информации: Роспатент

Showing 81-90 of 1,429 items.
20.09.2013
№216.012.6aac

Способ изготовления вихревой распылительной форсунки для распыления жидкого топлива

Изобретение относится к способу изготовления вихревой распылительной форсунки для распыления жидкого топлива. Подготавливают заготовку, имеющую полый цилиндр с закрывающим его с одной стороны днищем и открытым с другой стороны продольным концом. Вблизи днища в полом цилиндре выполняют по...
Тип: Изобретение
Номер охранного документа: 0002492959
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6bdd

Устройство для опрокидывания металлургического плавильного сосуда, металлургическая плавильная система и способ с применением такой плавильной системы

Изобретение относится к области металлургии, в частности к устройству (1) для опрокидывания металлургического плавильного сосуда (50, 55) электродуговой печи (101, 101'). Устройство содержит опрокидываемую рабочую площадку (2) печи, которая имеет отверстие (3) для размещения плавильного сосуда...
Тип: Изобретение
Номер охранного документа: 0002493264
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c8b

Направляющая или рабочая лопатка для осевого компрессора

Направляющая лопатка компрессора или рабочая лопатка осевого компрессора с осевым направлением, радиальным направлением (R), ступицей компрессора и корпусом компрессора. Направляющая лопатка или рабочая лопатка содержит аэродинамическую поверхность (1) с профильными сечениями (3, 5, 15А-15Е),...
Тип: Изобретение
Номер охранного документа: 0002493438
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d04

Селективный детектор монооксида углерода

Изобретение относится к селективному детектору монооксида углерода. Предложен детектор монооксида углерода, который базируется на двух чувствительных слоях. Второй чувствительный слой является каталитически активным и реагирует равным образом на спирты, в частности этанол, и на монооксид...
Тип: Изобретение
Номер охранного документа: 0002493559
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d07

Способ для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых...
Тип: Изобретение
Номер охранного документа: 0002493562
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6fe1

Улавливающий подшипник для улавливания роторного вала машины

Изобретение относится к улавливающему подшипнику для улавливания роторного вала машины. Улавливающий подшипник (2) имеет проходящие вокруг воображаемой геометрической средней оси (М) первое опорное тело (7) и роликовые тела (5). Роликовые тела (5) имеют, каждое, зону (19), которая расположена...
Тип: Изобретение
Номер охранного документа: 0002494292
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7029

Способ и устройство для распознавания состояния исследуемой создающей шумы машины

Использование: в способе и устройстве для распознавания состояния исследуемой создающей шумы машины. Сущность: в способе и устройстве распознавания состояния исследуемого создающего шумы объекта сгенерированная для по меньшей мере одного эталонного объекта статистическая основная модель...
Тип: Изобретение
Номер охранного документа: 0002494364
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bd

Способ управления при резервировании многофазного выпрямителя переменного тока с распределенными накопителями энергии

Изобретение относится к области электротехники и может быть использовано для управления выпрямителем переменного тока с распределенными накопителями энергии с тремя фазными модулями, которые имеют соответственно одну верхнюю и одну нижнюю ветвь вентилей, которые снабжены соответственно по...
Тип: Изобретение
Номер охранного документа: 0002494512
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71f2

Непрерывный прокатный стан с введением и/или выведением прокатных клетей в процессе функционирования

Изобретение предназначено для повышения качества проката. Способ включает непрерывную прокатку в нескольких клетях. Плавность выведения/введения прокатных клетей для замены валков обеспечивается за счет того, что при выведения одной (1'') из прокатных клетей (1, 1'') из непрерывного прокатного...
Тип: Изобретение
Номер охранного документа: 0002494827
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7327

Способ определения меры кусковатости твердого материала в электродуговой печи, электродуговая печь, устройство обработки сигнала, а также программный код и носитель данных

Изобретение относится к области получения металла в электродуговой печи. Технический результат - повышение точности прогнозирования состояния твердого материала в электродуговой печи. Согласно способу определения кусковатости для твердого материала, в особенности скрапа, в электродуговой печи...
Тип: Изобретение
Номер охранного документа: 0002495136
Дата охранного документа: 10.10.2013
Showing 81-90 of 948 items.
27.08.2013
№216.012.63a8

Устройство для литья полосы с позиционированием литейных валков

Изобретение относится к металлургии, в частности к непрерывному литью полосы в двухвалковой литейной машине. Устройство содержит пару вращающихся в противоположных направлениях литейных валков, расположенных сбоку друг от друга для формирования зазора между ними, через который отливается тонкая...
Тип: Изобретение
Номер охранного документа: 0002491149
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.64f1

Горелочное устройство

Изобретение относится к области энергетики. Горелочное устройство установки для сжигания текучих видов топлива содержит горелочную втулку (18), по меньшей мере, один канал (3, 4) для подачи воздуха и, по меньшей мере, один канал (9, 13, 19, 23) для подачи соответствующего топлива, при этом, по...
Тип: Изобретение
Номер охранного документа: 0002491478
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6568

Система управления, управляющее вычислительное устройство и способ функционирования системы управления

Группа изобретений относится к защищенной от отказов системе управления. Технический результат заключается в упрощении конструкции системы управления с сохранением ее отказоустойчивости. Для этого предложена система управления с управляющим вычислительным устройством, которое предусмотрено для...
Тип: Изобретение
Номер охранного документа: 0002491597
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6570

Система регулирования тока и способ для регулирования тока

Группа изобретений относится к средствам регулирования тока. Технический результат заключается в повышении надежности и точности системы регулирования тока. Для этого предложена система регулирования тока, которая содержит по меньшей мере одну продольную ветвь с линейным продольным регулятором...
Тип: Изобретение
Номер охранного документа: 0002491605
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.65b5

Проводниковая система для резистивного переключательного элемента по меньшей мере с двумя связками проводников из сверхпроводящих проводниковых лент

Изобретение относится к электротехнике, к проводниковым системам резистивных переключающих элементов. Технический результат состоит в повышении электрической прочности, уменьшении индуктивности и потерь в переменном поле и улучшении охлаждения. Проводниковая система (1А) для резистивного...
Тип: Изобретение
Номер охранного документа: 0002491674
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.65ca

Устройство для энергопитания длинной статорной обмотки с несколькими секциями обмотки

Изобретение относится к области электротехники и может быть использовано для энергопитания. Техническим результатом является обеспечение компенсации реактивной мощности независимо от регулирования источника энергии. Устройство для энергопитания длинной статорной обмотки (1), имеющей несколько...
Тип: Изобретение
Номер охранного документа: 0002491695
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.65cd

Магнитное устройство электрической машины с трубопроводом охладителя

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения магнитных устройств электрических машин с основой, выполненной ферромагнитной, и снабженных трубопроводами охладителей. Технический результат, достигаемый при...
Тип: Изобретение
Номер охранного документа: 0002491698
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.65fe

Защищенная от манипулирования передача данных между автоматизированными приборами

Изобретение относится к способу передачи дейтаграммы между автоматизированными приборами автоматизированных установок. Для того чтобы передачу дейтаграмм между автоматизированными приборами (20а, 20b) с применением сравнительно незначительной вычислительной мощности защитить от ошибок или...
Тип: Изобретение
Номер охранного документа: 0002491747
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6838

Составная часть машины и газовая турбина

Составная часть машины для газовой турбины с основной частью, изготовленной из исходного материала, которая в частичной области своей поверхности снабжена футеровкой из наносимого материала с большей твердостью и/или вязкостью по сравнению с исходным материалом. Футеровка образована некоторым...
Тип: Изобретение
Номер охранного документа: 0002492327
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6915

Силовой полупроводниковый модуль с боковыми стенками слоистой конструкции

Изобретение относится к силовому полупроводниковому модулю. Технический результат - предложение силового полупроводникового модуля, обладающего высокой взрывоустойчивостью и изготавливаемого с особенно оптимальными затратами. Достигается тем, что в силовом полупроводниковом модуле (1),...
Тип: Изобретение
Номер охранного документа: 0002492548
Дата охранного документа: 10.09.2013
+ добавить свой РИД