×
13.01.2017
217.015.852a

Результат интеллектуальной деятельности: ШТАММ БАКТЕРИЙ DESULFOVIBRIO SP. VK-9 ДЛЯ ОЧИСТКИ КИСЛЫХ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к промышленной микробиологии. Штамм бактерий Desulfovibrio sp. VK-9 обладает высокой устойчивостью к повышенным концентрациям ионов меди (до 125 мг/л), ионов никеля (до 250 мг/л), ионов кобальта (до 350 мг/л) и ионов кадмия (до 60 мг/л) и может быть использован при очистке кислых промышленных сточных вод машиностроительных, приборостроительных, электротехнических, горно-обогатительных предприятий, гальванических производств, а также для очистки кислых шахтных вод от повышенных концентраций ионов меди и других тяжелых металлов. Штамм Desulfovibrio sp. депонирован во Всероссийской коллекции Микроорганизмов Института биохимии и физиологии микроорганизмов РАН ИБФМ под регистрационным номером ВКМ В-3000D. Изобретение позволяет повысить степень очистки сточных вод от ионов тяжелых металлов. 2 табл., 4 пр.

Штамм бактерий Desulfovibrio sp. VK-9 выделен из слоистых матов с деревянной конструкции, затопленной водой на выходе из штольни, Акатуйское месторождение полиметаллических руд (Забайкальский край). Штамм характеризуется высокой устойчивостью к повышенным концентрациям ионов меди (до 125 мг/л), ионов никеля (до 250 мг/л), ионов кобальта (до 350 мг/л) и ионов кадмия (до 60 мг/л). Штамм способен к росту при широких значениях рН от 2,7 до 7,5.

Изобретение относится к промышленной микробиологии и касается получения нового штамма бактерий, которые могут быть использованы в биотехнологии очистки кислых промышленных сточных вод машиностроительных, приборостроительных, электротехнических, горно-обогатительных предприятий, гальванических производств, а также для очистки кислых шахтных вод от повышенных концентраций ионов меди и других тяжелых металлов.

Известен способ биосорбционной очистки воды от ионов тяжелых металлов с помощью дрожжей Saccharomyces cerevisiae (RU 2509734). Биомасса пивоваренных дрожжей способна утилизировать очистные воды, содержащие цинк (20 мг/дм3), никель (100 мг/дм3), медь (40 мг/дм3). Недостатком предложенного способа является неспособность его осуществления в кислых сточных водах, так как используемая дрожжевая культура способна расти при pH раствора 5,5-8,0.

Известно об использовании сульфатредуцирующих бактерий для очистки сточных вод от ионов тяжелых металлов. Образуемый сульфатредуцирующими бактериями сероводород в процессе биохимической очистки связывает ионы тяжелых металлов в нерастворимые сульфиды.

Известен штамм бактерий Desulfovibrio sp. СВБ-2 (RU 2269571), используемый для очистки сточных вод от ионов тяжелых металлов. Предлагаемый штамм выделен из промышленного стока гальванических производств, содержащих ионы тяжелых металлов. Однако указанная в патенте суммарная концентрация тяжелых металлов в используемых очистных водах составляет 197,9 мг/л, а меди - 8,9 мг/л. В сточных водах металлургических предприятий концентрация ионов меди может достигать 300 мг/л. Штамм СВБ-2 растет при рН 6,5-8,5, оптимум 7,2.

Недостатком штамма СВБ-2 является недостаточно высокая устойчивость к ионам тяжелых металлов, в частности ионам меди, что существенно ограничивает его использование в биотехнологиях. Ткже невозможно его применение в кислых сточных водах, имеющих рН < 5,0.

Известен штамм Desulfovibrio halophilus RETECH-SRB-I (CN 101434916), депонированный в китайском центре коллекции типовых культур (CCTCC) (университет Ухани) с номером депозита M207060, используемый для очистки кислых шахтных сточных вод от тяжелых металлов. Штамм способен очищать кислые шахтные воды со значением рН от 1,5 до 6,0 от ионов металлов в различных концентрациях: Cu2+ - 0,07-0,6 г/л; Zn2+ - 0,5-1,0 г/л; As3+- 1,2-2,8 г/л; Fe2+- 1,0-2,0 г/л; Fe3+- 0,3-3 г/л. К недостаткам предложенного штамма можно отнести его неспособность к росту на таких высокотоксичных металлах,как кадмий и никель, что ограничивает применение штамма в сточных водах гальванических производств и сточных водах других производств, содержащих один из самых токсичных металлов - кадмий. Кроме того, штамм имеет менее широкий спектр значений рН,при которых возможно его применение в биотехнологиях очистки сточных вод.

Наиболее близким по сущности и достигаемому результату к заявленному изобретению является штамм бактерии Desulfovibrio sp. для очистки сточных вод от ионов тяжелых металлов (RU 2542402). Штамм бактерий Desulfovibrio sp. A 4/1 выделен из илового отложения отстойника воды из системы охлаждения плавильных печей Челябинского металлургического комбината. Штамм характеризуется высокой устойчивостью к повышенным концентрациям ионов меди (до 600 мг/л) и других двухвалентных катионов металлов. Недостатком штамма Desulfovibrio sp. является его неспособность к росту при кислых значениях рН, оптимальный рН среды для штамма A 4/1 равен 7,2.

Задача изобретения - получение устойчивого к металлам, высокоактивного штамма сульфатредуцирующих бактерий, используемого для очистки кислых сточных вод от ионов тяжелых металлов.

Технический результат - применение штамма бактерий Desulfovibrio sp. VK-9 для очистки кислых сточных вод, включая шахтные, от ионов тяжелых металлов.

Штамм Desulfovibrio sp. VK-9 депонирован Всероссийской коллекцией микроорганизмов (ВКМ) Института биохимии и физиологии микроорганизмов им. Г.К.Скрябина РАН (ИБФМ) под регистрационным номером ВКМ В-3000D.

Предлагаемый штамм Desulfovibrio sp. VK-9 не известен в науке и технике, поэтому свойства, которые он проявляет, являются новыми, а следовательно, заявленное решение обладает изобретательским уровнем.

Анализ нуклеотидной последовательности гена 16S рРНК штамма VK-9 показал, что предлагаемый штамм является новым штаммом и принадлежит к роду Desulfovibrio.

Полученный штамм характеризуется следующими признаками.

Культурально-морфологические признаки патентуемого штамма определяют при его культивировании на стандартной пресноводной среде Видделя (Widdel, Bak, 1992). Температура культивирования штамма составляет +28 ºС. Выращивание проводят в течение3-4 суток без ионов металлов, 7-8 суток с добавлением ионов металлов в концентрации 100 мг/л и более.

Родовое и видовое название штамма - штамм бактерий Desulfovibrio sp. VK-9.

Происхождение - выделен из слоистых матов с деревянной конструкции, затопленной водой на выходе из штольни, Акатуйское месторождение полиметаллических руд (Забайкальский край).

Морфологическая характеристика - форма клеток - вибрион, размером 0,5-1,0×3,0×5,0 мкм.

Спорообразование - нет.

Реакция по Граму - отрицательная.

Подвижность клеток - подвижные.

Физиологическая характеристика - отношение к кислороду - анаэробные.

В качестве субстрата для роста используют лактат. Лактат метаболизируют по пути неполного окисления с образованием ацетата. Штамм устойчив к ионам меди (до 125 мг/л), кобальта (до 350 мг/л), никеля (до 250 мг/л), кадмия (до 60 мг/л). При культивировании штамма с ионами Fe2+ образуют черный осадок сульфидов железа. Штамм способен к росту при значениях рН от 3 до 7,5. Оптимальный рН среды 5,0-5,5.

Полезное свойство, в связи с которым культура депонируется - осаждение ионов тяжелых металлов в концентрациях, превышающих 100 мг/л, сероводородом.

Условия культивирования - пресноводная среда Видделя.

Условия хранения - сохраняется путем пересевов на среде культивирования или лиофилизированным.

Пример 1. Исследование способности штамма бактерий Desulfovibrio sp. VK-9 ВКМ В-3000D к осаждению ионов меди.

Чистую культуру СРБ Desulfovibrio sp. VK-9 ВКМ В-3000D культивировали на синтетической среде, содержащей ионы меди в концентрации 125 мг/л.

Посев проводили в стерильном ламинарном шкафу, который перед этим дезинфицировали ультрафиолетом 30 минут. Перед посевом синтетическую среду (таблица 1) доводили до кипения и затем быстро охлаждали под струей холодной воды для удаления растворенного кислорода. В охлажденную до комнатной температуры среду вносили питательные вещества (таблица 2) (в расчете на 1 л) в следующей последовательности: витамины (2 мл), раствор солей (10 мл), раствор кофакторов (1 мл), органический субстрат - лактат (1,6 мл), раствор H2SO4 (при внесении рН доводится до 4,5), H2S (2 мл). Перед внесением сероводорода добавляли маточный раствор меди в количестве 2 мл на 1 литр синтетической среды.

Во флаконы на 120 мл вносили около 50 мл синтетической среды с внесенными в нее добавками и 10 мл инокулята (культуры бактерий), после чего доливали средой до верха. Резиновые пробки притирали к краям флаконов с помощью стерильной иглы, что уменьшало вероятность проникновения кислорода воздуха. В конце посева флаконы закрывали алюминиевыми колпачками, запечатывали флакон закаточной машинкой и помещали термостат при температуре 28 ºС.

Медь осаждается в виде сульфида на дне флакона.

Таблица 1 - Состав синтетической среды

Реактив Концентрация, мг/л
Na2SO4 4000
MgCl2 6H2O 400
NaCl (25%) 0,0125*
FeSO4*7H2O 2,1
H3BO3 0,03
MnCl2*4H2O 0,1
CoCl2*6H2O 0,19
NiCl2*6H2O 0,024
CuCl2*2H2O 0,002
ZnSO4*7H2O 0,144
Na2MoO4*2H2O 0,036
CuSO4*7H2O 750
H2O 1 л
* - мл/л

Таблица 2 - Состав питательных веществ, добавляемых к синтетической среде

Раствор (вносимое количество на 1 литр синтетической среды) Реактив Концентрация
1. Витамины
(2 мл/л)
4-аминобензойная кислота 4 мг/л
Биотин (витамин Н) 1 мг/л
Никотиновая кислота (витамин В5) 10 мг/л
Кальция пантотенат (витамин В3) 5 мг/л
Пиридоксин дигидрохлорид (витамин В6) 15 мг/л
Цианкобаламин (витамин В12) 5 мг/л
Тиамин (витамин В1) 10 мг/л
Рибофлавин (витамин В2) 0,5 мг/л
Фолиевая кислота 0,2 мг/л
2. Раствор солей
(10 мл/л)
KH2PO4 20 г/л
NH4Cl 25 г/л
NaCl 100 г/л
KCl 50 г/л
CaCl2 11,3 г/л
H2O 1 л
3. Раствор кофакторов
(1 мл/л)
Na OH 4 г/л
Na2SeO3 x 5H2O 6 мг/л
Na2W O4 x2H2O 8 мг/л
4. Раствор Na2S
(2 мл/л)
Na2S x 9 H2O 4,8 г

Пример 2. Исследование способности штамма бактерий Desulfovibrio sp. VK-9 ВКМ В-3000D к осаждению ионов никеля.

Чистую культуру СРБ Desulfovibrio sp. VK-9 ВКМ В-3000D культивировали на синтетической среде, содержащей двухвалентный никель в концентрации 250 мгNi/л.

Посев проводили в стерильном ламинарном шкафу, который перед этим дезинфицировали ультрафиолетом 30 минут. Перед посевом синтетическую среду (таблица 1) доводили до кипения и затем быстро охлаждали под струей холодной воды для удаления растворенного кислорода. В охлажденную до комнатной температуры среду вносили питательные вещества (таблица 2) (в расчете на 1 л) в следующей последовательности: витамины (2 мл), раствор солей (10 мл), раствор кофакторов (1 мл), органический субстрат - лактат (1,6 мл), раствор H2SO4 (при внесении рН доводится до 4,5), раствор сульфида натрия (2 мл). Стоковый раствор никеля добавляли в количестве 25 мл на 1 литр синтетической среды (таким образом, достигалась концентрация никеля в среде 250 мг/л).

Во флаконы на 120 мл вносили около 50 мл синтетической среды с внесенными в нее добавками и 10 мл инокулята (культуры бактерий), после чего доливали средой до верха. Резиновые пробки притирали к краям флаконов с помощью стерильной иглы, что уменьшало вероятность проникновения кислорода воздуха. В конце посева флаконы закрывали алюминиевыми колпачками, запечатывали флакон закаточной машинкой и помещали термостат при температуре 28 ºС.

Никель осаждается в виде сульфида на дне флакона.

Пример 3. Исследование способности штамма бактерий Desulfovibrio sp. VK-9 ВКМ В-3000D к осаждению ионов кобальта.

Чистую культуру СРБ Desulfovibrio sp. VK-9 ВКМ В-3000D культивировали на синтетической среде, содержащей двухвалентный кобальт в концентрации 350 мгСо(II)/л.

Посев проводили в стерильном ламинарном шкафу, который перед этим дезинфицировали ультрафиолетом 30 минут. Перед посевом синтетическую среду (таблица 1) доводили до кипения и затем быстро охлаждали под струей холодной воды для удаления растворенного кислорода. В охлажденную до комнатной температуры среду вносили питательные вещества (таблица 2) (в расчете на 1 л) в следующей последовательности: витамины (2 мл), раствор солей (10 мл), раствор кофакторов (1 мл), органический субстрат - лактат (1,6 мл), раствор H2SO4 (при внесении рН доводится до 4,5), раствор сульфида натрия (2 мл). Стоковый раствор кобальта добавляли в количестве 35 мл на 1 литр синтетической среды (таким образом, достигалась концентрация кобальта в среде 350 мг/л).

Во флаконы вносили около 50 мл синтетической среды с внесенными в нее добавками и 10 мл инокулята (культуры бактерий), после чего доливали средой до верха. Резиновые пробки притирали к краям флаконов с помощью стерильной иглы, что уменьшало вероятность проникновения кислорода воздуха. В конце посева флаконы закрывали алюминиевыми колпачками, запечатывали флакон закаточной машинкой и помещали термостат при температуре 28 ºС.

Кобальт осаждается в виде сульфида на дне флакона.

Пример 4. Исследование способности штамма бактерий Desulfovibrio sp. VK-9 ВКМ В-3000D к осаждению ионов кадмия.

Чистую культуру СРБ Desulfovibrio sp. VK-9 ВКМ В-3000D культивировали на синтетической среде, содержащей двухвалентный кадмия в концентрации 60 мгCd(II)/л.

Посев проводили в стерильном ламинарном шкафу, который перед этим дезинфицировали ультрафиолетом 30 минут. Перед посевом синтетическую среду (таблица 1) доводили до кипения и затем быстро охлаждали под струей холодной воды для удаления растворенного кислорода. В охлажденную до комнатной температуры среду вносили питательные вещества (таблица 2) (в расчете на 1 л) в следующей последовательности: витамины (2 мл), раствор солей (10 мл), раствор кофакторов (1 мл), органический субстрат - лактат (1,6 мл), раствор H2SO4 (при внесении рН доводится до 4,5), раствор сульфида натрия (2 мл). Стоковый раствор кадмия добавляли в количестве 6,0 мл на 1 литр синтетической среды (таким образом, достигалась концентрация кадмия в среде 75 мг/л).

Во флаконы объемом 120 мл вносили около 50 мл синтетической среды с внесенными в нее добавками и 10 мл инокулята (культуры бактерий), после чего доливали средой до верха. Резиновые пробки притирали к краям флаконов с помощью стерильной иглы, что уменьшало вероятность проникновения кислорода воздуха. В конце посева флаконы закрывали алюминиевыми колпачками, запечатывали флакон закаточной машинкой и помещали термостат при температуре 28 ºС.

Кадмий осаждается в виде сульфида на дне флакона.

Штамм бактерий Desulfovibrio sp. VK-9 для очистки кислых сточных вод от ионов тяжелых металлов, депонированный во Всероссийской коллекции микроорганизмов ИБФМ РАН под регистрационным номером ВКМ В-3000D.
Источник поступления информации: Роспатент

Showing 51-60 of 177 items.
25.08.2017
№217.015.9b62

Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным...
Тип: Изобретение
Номер охранного документа: 0002610257
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bbd

Способ получения 4(5)-нитроимидазола

Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002610267
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
Showing 51-60 of 105 items.
25.08.2017
№217.015.9b62

Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным...
Тип: Изобретение
Номер охранного документа: 0002610257
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bbd

Способ получения 4(5)-нитроимидазола

Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002610267
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.abbb

Способ получения антитурбулентной присадки для углеводородных ракетных топлив

Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД). Способ осуществляют (со)полимеризацией высших α-олефинов в присутствии микросферического...
Тип: Изобретение
Номер охранного документа: 0002612135
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.aedd

Способ определения наночастиц au, ni и cu в жидких объектах

Использование: для количественного химического анализа с использованием электрохимических методов. Сущность изобретения заключается в том, что способ заключается в получении циклических вольтамперограмм с последующим расчетом концентрации наночастиц в образце по значениям тока аналитического...
Тип: Изобретение
Номер охранного документа: 0002612845
Дата охранного документа: 13.03.2017
+ добавить свой РИД