×
13.01.2017
217.015.8507

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, при разработке энергетического оборудования и исследовании новых марок сталей. В способе подготавливают образцы элемента котельного оборудования, затем их нагревают, результаты температурных измерений графически обрабатывают и на основе установленных зависимостей определяют величину температуры эксплуатации. Подготовленные образцы подвергают двум процедурам термоциклирования, на основе которых вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки. Результаты термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура». По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования. Такой способ позволит сократить время определения оптимальной температуры эксплуатации котельного оборудования. 4 ил.

Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при разработке энергетического оборудования и исследовании новых марок сталей.

В настоящее время выбор температуры эксплуатации элементов котельного оборудования, изготовленного из известных и наиболее часто используемых видов сталей, осуществляется согласно рекомендациям РД 10-249-98 «Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды» (таблица 1.3 «Допустимая температура наружной поверхности с учетом продуктов сгорания») из условия жаростойкости сталей как главной характеристики, определяющей ее работоспособность.

Под температурой эксплуатации элемента котельного оборудования понимают среднюю температуру стенки материала, из которого он изготовлен.

Известен способ определения температуры эксплуатации сталей на основе их жаростойкости (ГОСТ 6130-71 «Металлы. Методы определения жаростойкости»), выбранный в качестве прототипа, в котором подготавливают не менее трех образцов элемента котельного оборудования, измеряют их толщину и массу. Образцы загружают в печь с заданной температурой, нагревают и выдерживают их не менее 5000 часов (для срока службы стали 100000 часов), периодически извлекая для измерений толщины и массы. Глубину проникновения коррозии (hгл или ) определяют по формулам:

где S0 - толщина образца до испытания, мм;

S1 - толщина образца после испытания, мм;

hол, - максимальные толщины подокисного слоя, обедненного легирующими элементами, мм;

hл, - максимальные глубины локальной коррозии, мм;

h′ - глубина равномерной коррозии, мм.

Результаты измерений при различных температурах испытаний графически обрабатывают в логарифмических координатах: время - глубина проникновения коррозии. На основе полученных зависимостей определяют оптимальную рабочую температуру эксплуатации.

Недостатком метода является длительное время проведения единичного испытания.

Задача - сокращение времени на определение оптимальной температуры эксплуатации котельного оборудования.

Поставленная задача достигается тем, что в способе подготавливают образцы элемента котельного оборудования, затем их нагревают, результаты температурных измерений графически обрабатывают и на основе установленных зависимостей определяют величину температуры эксплуатации. Подготовленные образцы подвергают первому термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки. Результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура». Затем для ускоренного старения эти же образцы подвергают второму термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки. Результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура». По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования.

За безопасные диапазоны температур приняты интервалы зависимости «коэффициент линейных термических расширений элементарной кристаллической решетки - температура», в пределах которых коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры.

Диапазон температур, в котором коэффициент линейных термических расширений элементарной кристаллической решетки уменьшается с ростом температуры, сопровождается отрицательной ползучестью, приводящей к процессу термоусталостного разрушения и исчерпанию несущей способности элемента котельного оборудования. Соответственно эксплуатация в этом диапазоне температур не может считаться безопасной.

Особенностью работы элементов котельного оборудования является нестационарность теплового режима, что приводит к возникновению значительных градиентов температур (±50°C) во время эксплуатации [Вайнман А.Б., Школьникова Б.Э., Смиян О.Д., Жабров А.В. Механизмы и причины «нетрадиционных» повреждений труб пароперегревателей котлов энергоблоков сверхкритического давления // Электрические станции. - 2010. - №7. - Стр. 21, 4-й абзац]. Наличие диапазона температур, в котором коэффициент линейных термических расширений элементарной кристаллической решетки резко увеличивается с ростом температуры, приведет к возникновению циклических экстремальных напряжений знакопеременного характера и последующему разрушению. Соответственно эксплуатация элемента котельного оборудования в этом диапазоне температур не может считаться безопасной.

Величину температуры эксплуатации элемента котельного оборудования выбирают на основе определения общего безопасного диапазона температур по результатам первого и второго термоциклов и с учетом существующих в реальных условиях эксплуатации градиентов - ±50°C.

Под термоциклированием подразумевают нагрев до определенной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в нагретом состоянии агор, охлаждение до комнатной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в охлажденном состоянии ахол, а затем повторение этой последовательности действий с повышением температуры в каждом цикле нагрева.

Коэффициент линейных термических расширений элементарной кристаллической решетки определяют по формуле:

где - параметр элементарной кристаллической решетки образца при температуре ti;

- параметр элементарной кристаллической решетки для холодного состояния образца предыдущего термоцикла;

ti - температура термоциклирования;

ti-1 - температура предыдущего термоцикла;

- среднее значение параметров элементарной кристаллической решетки образца.

В таблице 1 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 во время первого термоциклирования.

В таблице 2 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 во время второго термоциклирования.

В таблице 3 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 во время первого термоциклирования.

В таблице 4 приведены результаты определения коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 во время второго термоциклирования.

На фиг. 1 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 от температуры при первом термоциклировании.

На фиг. 2 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца экранной трубы из стали Ст 10 от температуры при втором термоциклировании.

На фиг. 3 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 от температуры при первом термоциклировании.

На фиг. 4 показана зависимость коэффициента линейных термических расширений элементарной кристаллической решетки образца трубы экономайзера из стали Ст 20 от температуры при втором термоциклировании.

Описание поясняется следующими примерами.

Пример 1. Подготавливают образец экранной трубы (32×5 мм) из стали Ст 10 в виде шлифа размером 15×30×5 мм, подвергают его первому термоциклированию (последовательно нагревают до 100, 215, 300, 400, 500, 550, 600, 650, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 12°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 1). Результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки -температура» (фиг. 1).

Затем для ускоренного старения этот же образец подвергают второму термоциклированию (последовательно нагревают до 100, 200, 300, 400, 500, 640, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 12°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 2). Результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура» (фиг. 2).

По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования следующим образом.

На основе результатов первого термоциклирования (фиг. 1) выделяют 5 диапазонов температур: 100-300°C (T1-1-T1-3), 300-400°C (Т1-31-4), 400-500°C (Т1-41-5), 500-600°C (Т1-51-7) и 600-700°C (Т1-71-9).

В диапазонах температур 100-300°C (T1-1-T1-3), 400-500°C (T1-4-T1-5) и 600-700°C (Т1-71-9) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести. Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 500-600°C (T1-5-T1-7) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 11,3·10-6 до 20,6·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазон температур 300-400°C (Т1-31-4), в котором коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры, принимают за безопасный для первого термоцикла.

На основе результатов второго термоциклирования (фиг. 2) выделяют 4 диапазона температур: 100-200°C (T2-1-T2-2), 200-400°C (Т2-22-4), 400-640°C (Т2-42-6) и 640-700°C (Т2-62-7).

В диапазонах температур 100-200°C (T2-1-T2-2) и 640-700°C (Т2-62-7) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести. Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 400-640°C (Т2-42-6) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 15,9·10-6 до 23,1·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазон температур 200-400°C (Т2-22-4) принимают за безопасный для второго термоцикла, так как изменение коэффициента линейных термических расширений элементарной кристаллической решетки образцов в этом диапазоне укладывается в погрешность измерений.

Общим безопасным диапазоном температур для двух термоциклов является 300-400°C.

При этом величина температуры эксплуатации экранной трубы из стали Ст 10 с учетом существующих в реальных условиях эксплуатации градиентов котельного оборудования (±50°C) составляет 350°C.

Полученное значение температуры подтверждается опытом эксплуатации элементов котельного оборудования из стали Ст 10, согласно которому данная сталь используется в котлостроении для изготовления экранов в топочной камере котлоагрегата, штамповок, поковок, трубопроводов котлов высокого давления для длительной работы при температурах, не превышающих 350°C [Стали и сплавы для высоких температур: Справ, изд. В 2-х кн. Кн. 1. / С.Б. Масленков, Е. А. Масленкова. - М.: Металлургия, 1991. - С. 50].

Пример 2. Подготавливают образец трубы экономайзера (32×5 мм) из стали Ст 20 в виде шлифа размером 15×30×5 мм, подвергают его первому термоциклированию (последовательно нагревают до температуры 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 637, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 10°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 3). Результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура» (фиг. 3).

Затем для ускоренного старения этот же образец подвергают второму термоциклированию (последовательно нагревают до температуры 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 650, 700°C и при каждой температуре определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, после каждого нагревания охлаждают до температуры 10°C и определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки при соответствующих температурах (таблица 4). Результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура» (фиг. 4).

По двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину температуры эксплуатации элемента котельного оборудования следующим образом.

На основе результатов первого термоциклирования (фиг. 3) выделяют 6 диапазонов температур: 100-200°C (T3-1-T3-3), 200-250°C (Т3-33-4), 250-350°C (Т3-43-6), 350-450°C (Т3-63-8), 450-500°C (Т3-83-9) и 500-700°C (T3-9-T3-12).

В диапазонах температур 100-200°C (Т3-13-3), 250-350°C (Т3-43-6) и 500-700°C (Т3-93-12) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести.

Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 450-500°C (Т3-83-9) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 14,6·10-6 до 20,4·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазоны температур 200-250°C (Т3-33-4) и 350-450°C (Т3-63-8), в которых коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры, принимают за безопасные для первого термоцикла.

На основе результатов второго термоциклирования (фиг.4) выделяют 7 диапазонов температур: 100-150°C (Т4-14-2), 150-200°C (Т4-24-3), 200-250°C (Т4-34-4), 250-300°C (Т4-44-5), 300-400°C (Т4-54-7), 400-450°C (Т4-74-8) и 450-700°C (Т4-84-10).

В диапазонах температур 100-150°C (Т4-14-2), 250-300°C (Т4-44-5) и 400-450°C (Т4-74-8) коэффициент линейных термических расширений элементарной кристаллической решетки образцов уменьшается с ростом температуры, что свидетельствует о наличии отрицательной ползучести. Эксплуатация элементов котельного оборудования в этих диапазонах температур не может считаться безопасной.

В диапазоне температур 200-250°C (Т4-34-4) происходит резкое увеличение коэффициента линейных термических расширений элементарной кристаллической решетки образцов с 11,9·10-6 до 15,4·10-6 1/°C, что может привести к формоизменению элемента, раздутию с уменьшением толщины стенки и потерей прочности. Эксплуатация элементов котельного оборудования в этом диапазоне температур не может считаться безопасной.

Диапазоны температур 150-200°C (Т4-24-3), 300-400°C (Т4-54-7) и 450-700°C (T4-8-T4-10), в которых коэффициент линейных термических расширений элементарной кристаллической решетки несущественно увеличивается с ростом температуры, принимают за безопасные для второго термоцикла.

Общим безопасным диапазоном температур для двух термоциклов является 350-400°C.

При этом величина температуры эксплуатации труб экономайзера из стали Ст 20 с учетом существующих в реальных условиях эксплуатации градиентов котельного оборудования (±50°C) составляет 375°C.

Опыт эксплуатации стали Ст 20 [Стали и сплавы для высоких температур: Справ. изд. В 2-х кн. Кн. 1. / С.Б. Масленков, Е. А. Масленкова. -М.: Металлургия, 1991. - С. 54], применяемой для изготовления труб пароперегревателей, коллекторов и трубопроводов котлов высокого давления, показывает, что для длительной службы температура ее эксплуатации не должна превышать 350°C.

Согласно [РД 10-249-98 «Нормы расчета на прочность стационарных котлов и трубопроводов пара и горячей воды», таблица 1.3 «Допустимая температура наружной поверхности с учетом продуктов сгорания»] температура наружной стенки элемента котельного оборудования, изготовленного из стали Ст 20, не должна превышать 450-500°C. При этом температура среды, находящейся внутри труб экономайзеров и экранных поверхностей, обычно равна температуре насыщения пара - 310-320°C. Таким образом, температура эксплуатации, равная средней температуре, составляет 380-410°C, что подтверждает полученное значение 375°C.

Способ определения температуры эксплуатации элементов котельного оборудования, в котором подготавливают образцы элемента котельного оборудования, затем их нагревают, результаты температурных измерений графически обрабатывают и на основе установленных зависимостей определяют величину рабочей температуры эксплуатации, отличающийся тем, что подготовленные образцы подвергают первому термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки, результаты первого термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура», затем для ускоренного старения эти же образцы подвергают второму термоциклированию, на основе которого вычисляют коэффициенты линейных термических расширений элементарной кристаллической решетки, результаты второго термоциклирования графически обрабатывают в координатах «коэффициент линейных термических расширений элементарной кристаллической решетки - температура», по двум полученным зависимостям определяют безопасные диапазоны температур, на основе которых при учете градиента устанавливают величину рабочей температуры эксплуатации элемента котельного оборудования.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ЭЛЕМЕНТОВ КОТЕЛЬНОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Showing 31-40 of 266 items.
20.05.2016
№216.015.3e39

Способ определения статических характеристик нагрузки по напряжению

Изобретение относится к области электротехники и может быть использовано для определения статических характеристик нагрузки по напряжению. Способ заключается в том, что в узле нагрузки производят последовательные изменения напряжения, измеряют напряжение и мощность и переводят измеренные...
Тип: Изобретение
Номер охранного документа: 0002584338
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3e67

Способ управления подводным объектом

Изобретение относится к способу управления подводным объектом. Для перемещения подводного объекта по вертикали со стороны судна изменяют длину первой из двух частей механической связи между объектом и судном, поддерживая усилие, равное весу подводного объекта в воде, осуществляют дополнительное...
Тип: Изобретение
Номер охранного документа: 0002584351
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3ef1

Синтез ноль-валентных наночастиц металлов переходной группы с поверхностью, ковалентно модифицированной органическими функциональными группами

Изобретение может быть использовано в неорганической химии. Способ синтеза ноль-валентных наночастиц переходных металлов - железа, или кобальта, или палладия, или марганца, или платины - с ковалентно модифицированной органическими функциональными группами поверхностью включает восстановление...
Тип: Изобретение
Номер охранного документа: 0002584288
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fba

Устройство для максимальной токовой защиты электроустановок

Использование: в области электроэнергетики. Технический результат: обеспечение регулирования уставок срабатывания защит в отсеках ячеек комплектных распределительных устройств напряжением 6-10 кВ. Устройство для максимальной токовой защиты электроустановок содержит три устройства для крепления...
Тип: Изобретение
Номер охранного документа: 0002584548
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3ff9

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002584339
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41a0

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002584275
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.420a

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых...
Тип: Изобретение
Номер охранного документа: 0002585326
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4276

Однофазный асинхронный электродвигатель

Изобретение относится к электротехнике, а именно к однофазным асинхронным электродвигателям с пусковой обмоткой, и может быть использовано при создании электрических машин для бытовой техники и электроинструмента. Технический результат: повышение пускового момента однофазного асинхронного...
Тип: Изобретение
Номер охранного документа: 0002585280
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4294

Устройство для очистки плазменного потока дуговых испарителей от микрокапельной фракции

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и может быть использовано в электронной, инструментальной, оптической, машиностроительной и других отраслях промышленности. Устройство содержит жалюзийную систему, выполненную в виде набора электродов, перекрывающих...
Тип: Изобретение
Номер охранного документа: 0002585243
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46bc

Способ измерения коэффициентов диффузии водорода в титане

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах на основе титана, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию в процессе...
Тип: Изобретение
Номер охранного документа: 0002586960
Дата охранного документа: 10.06.2016
Showing 31-40 of 154 items.
20.05.2016
№216.015.3ef1

Синтез ноль-валентных наночастиц металлов переходной группы с поверхностью, ковалентно модифицированной органическими функциональными группами

Изобретение может быть использовано в неорганической химии. Способ синтеза ноль-валентных наночастиц переходных металлов - железа, или кобальта, или палладия, или марганца, или платины - с ковалентно модифицированной органическими функциональными группами поверхностью включает восстановление...
Тип: Изобретение
Номер охранного документа: 0002584288
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fba

Устройство для максимальной токовой защиты электроустановок

Использование: в области электроэнергетики. Технический результат: обеспечение регулирования уставок срабатывания защит в отсеках ячеек комплектных распределительных устройств напряжением 6-10 кВ. Устройство для максимальной токовой защиты электроустановок содержит три устройства для крепления...
Тип: Изобретение
Номер охранного документа: 0002584548
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3ff9

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002584339
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41a0

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002584275
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.420a

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых...
Тип: Изобретение
Номер охранного документа: 0002585326
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4276

Однофазный асинхронный электродвигатель

Изобретение относится к электротехнике, а именно к однофазным асинхронным электродвигателям с пусковой обмоткой, и может быть использовано при создании электрических машин для бытовой техники и электроинструмента. Технический результат: повышение пускового момента однофазного асинхронного...
Тип: Изобретение
Номер охранного документа: 0002585280
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.4294

Устройство для очистки плазменного потока дуговых испарителей от микрокапельной фракции

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и может быть использовано в электронной, инструментальной, оптической, машиностроительной и других отраслях промышленности. Устройство содержит жалюзийную систему, выполненную в виде набора электродов, перекрывающих...
Тип: Изобретение
Номер охранного документа: 0002585243
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46bc

Способ измерения коэффициентов диффузии водорода в титане

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах на основе титана, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию в процессе...
Тип: Изобретение
Номер охранного документа: 0002586960
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.5d86

Устройство для управления подводным объектом

Изобретение относится к управлению подводными объектами с использованием судовых спускоподъемных устройств. Устройство для управления подводным объектом содержит на судне-носителе лебедку, задатчик среднего значения длины каната, задатчик скорости лебедки, управляющий блок, электропривод...
Тип: Изобретение
Номер охранного документа: 0002590801
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66e5

Электропривод колебательно-вращательного движения

Изобретение относится к электротехнике, в частности к электроприводам переменного тока периодического движения. Электропривод колебательно-вращательного движения содержит двухфазный асинхронный двигатель, обмотка возбуждения которого подключена к источнику переменного тока, а обмотка управления...
Тип: Изобретение
Номер охранного документа: 0002592080
Дата охранного документа: 20.07.2016
+ добавить свой РИД