×
13.01.2017
217.015.8472

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ СПЕКТРАЛЬНЫХ ПАРАМЕТРОВ ВОЛОКОННОЙ БРЭГГОВСКОЙ РЕШЕТКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области волоконной оптики и касается способа контроля спектральных параметров волоконной брэгговской решетки (ВБР). Способ включает в себя облучение ВБР излучением перестраиваемого поверхностно-излучающего лазера с вертикальным резонатором (VCSEL), измерение отраженного от ВБР излучения, преобразование измеренного излучения в спектр ВБР. Облучение ВБР осуществляют при подаче на VCSEL прямоугольных токовых импульсов с постоянной длительностью от 1 до 500 мкс и величиной до 12 мА. Преобразование временного сигнала в спектр ВБР производят с помощью предварительно построенной нормировочной кривой, характеризующей временную динамику изменения центральной длины волны VCSEL в течение одного прямоугольного токового импульса. Для построения нормировочной кривой используют узкополосный спектральный фильтр (УСФ). УСФ облучают импульсами излучения VCSEL и измеряют отраженное излучение. По полученным данным определяют зависимость длины волны от мощности отраженного от УСФ излучения и зависимость мощности от времени, прошедшего от начала токового импульса. Технический результат заключается в повышении точности измерений. 3 ил.

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических спектральных датчиках для контроля спектров волоконных брэгговских решеток (ВБР).

Основным параметром информационного сигнала волоконно-оптического спектрального датчика, в качестве чувствительного элемента которого выступает ВБР, является центральная длина волны отражения ВБР.

Волоконная решетка Брэгга представляет собой участок волоконного световода (как правило, одномодового), в сердцевине которого наведена периодическая структура показателя преломления (ПП) с периодом L, имеющая определенное пространственное распределение. Как правило, решетка формируется в фоточувствительной сердцевине световода, в то время как ПП кварцевой оболочки остается неизменным. Такая структура обладает уникальными спектральными характеристиками, которые и определяют ее широкое применение в различных устройствах волоконной оптики.

ВБР связывают основную моду световода с той же модой, распространяющейся в противоположном направлении. Это означает, что на определенной длине волны распространяющееся по световоду излучение отражается от решетки полностью или частично. Центральная длина волны отражения ВБР определяется согласно условию Брэгга:

где λBG - длина волны Брэгговского резонанса, - эффективный ПП, - период изменения ПП в волокне. При механических или температурных воздействиях на ВБР центральная длина волны отражения ВБР смещается. Это явление используется для создания волоконно-оптических датчиков давления, температуры, вибрации, влажности и прочих.

Для получения спектральных характеристик ВБР используют оптический интеррогатор. Существует три основных принципа построения таких устройств:

- пространственное разделение входного излучения по длинам волн с помощью призмы или дифракционной решетки;

- сканирование спектрального диапазона с помощью перестраиваемого источника оптического излучения (ИОИ);

- сканирование спектрального диапазона с помощью перестраиваемого оптического фильтра.

Известен способ контроля спектральных параметров ВБР [статья P.М. Toet, R.A.J. Hagen, Н.С. Hakkesteegt, J. Lugtenburg, M.P. "Maniscalco Miniature and low cost fiber bragg grating interrogator for structural monitoring in nano-satellites" International Conference on Space Optics - Tenerife, Canary Islands, Spain 7-10 October 2014], использующий поверхностно-излучающий лазер с вертикальным резонатором (vertical-cavity surface emitting laser - VCSEL) в качестве перестраиваемого ИОИ. Перестройка центральной длины волны излучения VCSEL происходит за счет подачи на него пилообразных токовых импульсов постоянной длительности. Построение спектра исследуемой ВБР производится с помощью вычисления временной задержки между сигналами с исследуемой и опорной ВБР, находящейся в покое.

Недостатками известного способа являются относительно низкая частота обновления данных, низкая разрешающая способность, большое количество дополнительных оптических элементов, необходимость температурной и вибрационной стабилизации опорной ВБР.

Известен способ контроля спектральных параметров ВБР, выбранный в качестве прототипа [статья В. Van Ное, Е. Bosman, J. Missinne, S. Kalathimekkad, G. Lee "Low-cost fully integrated fiber Bragg grating interrogation system" Proc. SPIE 8351, Third Asia Pacific Optical Sensors Conference - 31 January 2012], использующий VCSEL в качестве перестраиваемого ИОИ. Перестройка центральной длины волны излучения VCSEL происходит за счет подачи на него пилообразных токовых импульсов постоянной длительности. При этом значение тока накачки изменяется от 0.1 мА до 4 мА с шагом 0.01 мА. Построение спектров производится путем сопоставления данных о смещении центральной длины волны излучения VCSEL при увеличении тока накачки с регистрируемой оптической мощностью сигнала ВБР.

Недостатками известного способа являются относительно низкая частота обновления данных, низкий диапазон перестройки центральной длины волны излучения VCSEL, обусловленный способом его управления.

Задача, на решение которой направлено данное изобретение, состоит в обеспечении контроля спектральных параметров ВБР с повышенной точностью в широком диапазоне длин волн.

Технический результат достигается за счет перестройки центральной длины волны излучения VCSEL в заданном диапазоне с помощью подачи на VCSEL прямоугольных токовых импульсов с постоянной длительностью от 1 до 500 мкс и величиной до 12 мА.

Поставленная задача решается следующим образом.

В способе контроля спектральных параметров волоконной брэгговской решетки (ВБР), включающем ее облучение излучением перестраиваемого поверхностно-излучающего лазера с вертикальным резонатором (VCSEL), облучение ВБР осуществляют при подаче на VCSEL прямоугольных токовых импульсов с постоянной длительностью от 1 до 500 мкс и величиной до 12 мА, измеряют отраженное от ВБР излучение и преобразуют его во временной сигнал, осуществляют преобразование измеренного временного сигнала в спектр ВБР с последующим определением искомых спектральных параметров, а преобразование измеренного временного сигнала в спектр ВБР производят с помощью предварительно построенной нормировочной кривой, характеризующей временную динамику изменения центральной длины волны источника излучения VCSEL в течение одного прямоугольного токового импульса, а для построения нормировочной кривой используют перестраиваемый узкополосный спектральный фильтр (УСФ), облучают его излучением VCSEL при подаче на него прямоугольных токовых импульсов с постоянной длительностью от 1 до 500 мкс и величиной до 12 мА и измеряют спектр УСФ, представляющий зависимость длины волны отраженного от УСФ излучения от мощности отраженного от УСФ излучения и временной сигнал УСФ, представляющий зависимость отраженной от УСФ мощности излучения от времени от начала токового импульса, по измеренным зависимостям определяют динамику изменения центральной длины волны излучения VCSEL в течение подаваемого на него прямоугольного импульса путем сопоставления спектральных параметров УСФ с соответствующими им временными параметрами сигнала УСФ, измеренными от начала токового импульса.

Сущность заявляемого способа поясняется следующим. В способе контроля спектральных параметров ВБР, включающем облучение ВБР излучением перестраиваемого поверхностно-излучающего лазера с вертикальным резонатором и построение спектра ВБР, осуществляют перестройку центральной длины волны излучения путем подачи на VCSEL прямоугольных токовых импульсов с постоянной длительностью от 1 до 500 мкс, их значение по току составляет не более 12 мА. При подаче на VCSEL таких импульсов происходит нагрев активной области лазера, вызывающий нагрев брэгговских отражателей, входящих в структуру VCSEL и расположенных в непосредственной близости от активной области VCSEL. Нагрев обуславливает смещение длины волны отражения брэгговских отражателей, что вызывает изменение центральной длины волны излучения лазера в течение импульса до 3 нм. При воздействии на ВБР таким излучением получают временной отклик, характеризующий спектр ВБР. Временной отклик преобразуется в спектр с помощью нормировочной кривой путем замены данных по временной оси соответствующими значениями длин волн. Измерение величины перестройки центральной длины волны излучения лазера производилось с помощью контрольного оптического анализатора спектра.

Нормировочная кривая, характеризующая временную динамику изменения центральной длины волны источника излучения VCSEL в течение одного прямоугольного токового импульса, строится по точкам с помощью определения взаимосвязи между временным сигналом перестраиваемого узкополосного спектрального фильтра (УСФ), представляющего зависимость отраженной от перестраиваемого УСФ мощности излучения от времени от начала токового импульса, измеренным с помощью фотоприемного устройства, и спектром перестраиваемого УСФ, представляющего зависимость отраженной от перестраиваемого УСФ мощности излучения от длины волны отраженного от перестраиваемого УСФ излучения, измеренным с помощью контрольного оптического анализатора спектра при облучении перестраиваемого УСФ поверхностно-излучающим лазером с вертикальным резонатором (VCSEL), работающем в указанном выше режиме. В ходе построения каждой отдельной точки нормировочной кривой производится сопоставление временного сигнала перестраиваемого УСФ и спектра перестраиваемого УСФ для каждого уникального положения центральной длины волны отражения перестраиваемого УСФ, достигаемого с помощью смещения центральной длины волны отражения УСФ. Перестройка УСФ производится во всем диапазоне перестройки центральной длины волны VCSEL. В качестве перестраиваемого УСФ использовалась ВБР. Перестройка центральной длины волны отражения ВБР производилась за счет прикладывания к ВБР механического напряжения (растяжения), вызывающего изменение периода ВБР, а также изменение локального показателя преломления сердцевины оптического волокна обусловленного упругооптическим эффектом. В результате полученная кривая характеризует временную динамику изменения центральной длины волны излучения VCSEL в течение каждого токового импульса во всем диапазоне перестройки.

Сущность заявляемого способа поясняется чертежами, где на фиг. 1 представлена структурная схема устройства, реализующего способ, на фиг. 2 представлена зависимость изменения центральной длины волны излучения VCSEL от времени от начала импульса, на фиг. 3 представлены полученные спектры ВБР.

Устройство содержит блок контроля перестройки длины волны излучения 1, соединенный с ИОИ 2 и представляющий собой электрическую схему, которая задает длительность подаваемых на VCSEL токовых импульсов, тем самым определяя диапазон перестройки центральной длины волны перестраиваемого ИОИ 2 в диапазоне от λmin до λmax. ИОИ 2 является поверхностно-излучающим лазером с вертикальным резонатором типа VCSEL с встроенным элементом Пельтье, обеспечивающим термостабилизацию VCSEL и фиксацию центральной длины волны излучения в режиме постоянного излучения. Выход ИОИ 2 оптически подключен к входу оптической схемы 3, которая содержит оптический разветвитель в конфигурации 1×2 с коэффициентом деления 50/50 с подключенной к нему ВБР. Оптическая схема 3 оптически соединена с входом фотоприемного устройства (ФПУ) 4, которое детектирует оптическое излучение на выходе оптической схемы 3 и преобразует оптический сигнал в электрический сигнал. Выход ФПУ 4 подключен к входу микросхемы аналого-цифрового преобразователя (АЦП) 5. Выход АЦП 5 соединен с входом блока цифровой обработки сигналов (ЦОС) 6, который представляет собой программируемую логическую интегральную схему (ПЛИС). Блок ЦОС 6 содержит: блок контроля перестройки длины волны излучения 1, блок конвертирования сигнала из временной области в спектральную 7, блок вычисления спектральных характеристик 8. Блоки 1, 7-8 реализованы программным способом в программируемой логической интегральной схеме (ПЛИС). Вход блока конвертирования сигнала из временной области в спектральную 7 подключен к выходу АЦП 5. Выход блока конвертирования сигнала из временной области в спектральную 7 соединен с входом блока вычисления спектральных характеристик 8.

Заявляемый способ реализуется следующим образом. Блок контроля перестройки длины волны излучения 1 задает диапазон перестройки длины волны излучения λminmax во времени при помощи изменения длительности и периода следования прямоугольных токовых импульсов, подаваемых на ИОИ 2. Импульс от источника оптического излучения 2 попадает в оптическую схему 3, которая содержит ВБР, подключенную к ИОИ и ФПУ через оптический разветвитель в конфигурации 1×2 с коэффициентом деления 50/50. Центральная длина волны отражения ВБР находится в пределах перестройки длины волны излучения VCSEL, в результате чего на ФПУ поступает сигнал с задержкой по времени от начала импульса, характеризующий спектр ВБР. Задержка обусловлена изменением центральной длины волны излучения VCSEL в течение токового импульса. ФПУ 4 преобразует оптический сигнал на выходе оптической схемы 3 в электрический сигнал. Далее сигнал попадает в блок аналого-цифрового преобразования сигнала 5. Блок конвертирования сигнала из временной области в спектральную 7 преобразует временной сигнал с АЦП в спектр с помощью нормировочной кривой, описывающей динамику изменения длины волны излучения VCSEL во времени, путем замены данных по временной оси соответствующими значениями длин волн. Далее из полученного спектра средствами блока вычисления спектральных характеристик 8 рассчитываются необходимые спектральные параметры ВБР.

В качестве конкретного примера выполнения предлагается способ контроля спектральных параметров ВБР с помощью перестраиваемого источника оптического излучения типа VCSEL, в котором исследуется спектр ВБР, записанной в изотропное волокно.

В качестве источника оптического излучения используется полупроводниковый поверхностно-излучающий лазер с вертикальным резонатором типа VCSEL. В качестве блока контроля перестройки длины волны источника оптического излучения используется микросхема драйвера стабилизации и формирования токовых импульсов МАХ3869 производства Maxim Integrated. Она принимает сигналы управления непосредственно от ПЛИС Altera Cyclone V 5СЕА4.

Для термической стабилизации VCSEL используется контроллер элемента Пельтье, который регулирует температуру источника оптического излучения. В качестве ФПУ используется фотодиодный модуль PDI-40-RM.

Обработка сигнала производилась при помощи 16-битного АЦП и программируемой логической интегральной схемы. В качестве способа обработки спектральных данных ВБР может быть использован предложенный способ. Обработка информационного сигнала волоконно-оптического спектрально датчика реализована в программируемой логической интегральной схеме.

В качестве примера проводилось исследование спектра ВБР. В качестве физического воздействия на ВБР, вызывающего смещение центральной длины волны отражения, к ВБР последовательно прикладывалась растягивающая сила величиной от 0 до 3,5 Н. В ходе исследования измерялся спектр ВБР с помощью предлагаемого способа контроля спектральных параметров волоконной брэгговской решетки и контрольного оптического анализатора спектра YOKOGAWA AQ6370C. На фиг. 3 представлены полученные спектры ВБР, где сплошной черной линией отмечены спектры, полученные с помощью контрольного оптического анализатора спектра, пунктирной линией отмечены спектры, построенные с помощью предлагаемого способа. Максимальная частота обновления данных - 10 кГц, величина рассогласования центральной длины волны отражения ВБР, рассчитанная по полученным спектрам, с данными контрольного оптического анализатора спектра не превышает 10 пм.

Таким образом, заявляемый способ контроля спектральных параметров волоконных решеток Брэгга с помощью перестраиваемого поверхностно-излучающего лазера с вертикальным резонатором обеспечивает построение спектров ВБР, по которым определяют спектральные параметры ВБР с точностью до 10 пм на частоте до 10 кГц в диапазоне перестройки источника оптического излучения до 3 нм.

Способ контроля спектральных параметров волоконной брэгговской решетки (ВБР), включающий ее облучение излучением перестраиваемого поверхностно-излучающего лазера с вертикальным резонатором (VCSEL), отличающийся тем, что облучение ВБР осуществляют при подаче на VCSEL прямоугольных токовых импульсов с постоянной длительностью от 1 до 500 мкс и величиной до 12 мА, измеряют отраженное от ВБР излучение и преобразуют его во временной сигнал, осуществляют преобразование измеренного временного сигнала в спектр ВБР с последующим определением искомых спектральных параметров, а преобразование измеренного временного сигнала в спектр ВБР производят с помощью предварительно построенной нормировочной кривой, характеризующей временную динамику изменения центральной длины волны источника излучения VCSEL в течение одного прямоугольного токового импульса, а для построения нормировочной кривой используют перестраиваемый узкополосный спектральный фильтр (УСФ), облучают его излучением VCSEL при подаче на него прямоугольных токовых импульсов с постоянной длительностью от 1 до 500 мкс и величиной до 12 мА и измеряют спектр УСФ, представляющий зависимость длины волны отраженного от УСФ излучения от мощности отраженного от УСФ излучения, и временной сигнал УСФ, представляющий зависимость отраженной от УСФ мощности излучения от времени от начала токового импульса, по измеренным зависимостям определяют динамику изменения центральной длины волны излучения VCSEL в течение подаваемого на него прямоугольного импульса путем сопоставления спектральных параметров УСФ с соответствующими им временными параметрами сигнала УСФ, измеренными от начала токового импульса.
СПОСОБ КОНТРОЛЯ СПЕКТРАЛЬНЫХ ПАРАМЕТРОВ ВОЛОКОННОЙ БРЭГГОВСКОЙ РЕШЕТКИ
СПОСОБ КОНТРОЛЯ СПЕКТРАЛЬНЫХ ПАРАМЕТРОВ ВОЛОКОННОЙ БРЭГГОВСКОЙ РЕШЕТКИ
СПОСОБ КОНТРОЛЯ СПЕКТРАЛЬНЫХ ПАРАМЕТРОВ ВОЛОКОННОЙ БРЭГГОВСКОЙ РЕШЕТКИ
СПОСОБ КОНТРОЛЯ СПЕКТРАЛЬНЫХ ПАРАМЕТРОВ ВОЛОКОННОЙ БРЭГГОВСКОЙ РЕШЕТКИ
Источник поступления информации: Роспатент

Showing 11-20 of 20 items.
20.04.2015
№216.013.42b6

Волноводный концентратор солнечного элемента

Волноводный концентратор солнечного элемента относится к волноводной и волоконной оптике и может быть использован в солнечных элементах и солнечных батареях с монокристаллическими полупроводниковыми фотоэлектрическими преобразователями. Концентратор солнечного элемента состоит из трех...
Тип: Изобретение
Номер охранного документа: 0002548576
Дата охранного документа: 20.04.2015
27.06.2015
№216.013.5a0f

Баллистический гравиметр

Изобретение относится к гравиметрии и может быть использовано для измерений абсолютных значений ускорения свободного падения. Баллистический гравиметр содержит вакуумную камеру, устройство сбрасывания пробного тела, источник излучения, фотоприёмник, устройство синхронизации и обработки сигнала....
Тип: Изобретение
Номер охранного документа: 0002554596
Дата охранного документа: 27.06.2015
27.08.2016
№216.015.4f2f

Способ контроля параметров сигнала волоконно-оптического интерферометрического фазового датчика с перестраиваемым источником оптического излучения

Способ контроля параметров сигнала волоконно-оптического интерферометра фазового датчика с перестраиваемым источником оптического излучения включает в себя измерение амплитуды контролируемого интерферометрического сигнала, по которому судят о текущем значении глубины фазовой модуляции, ее...
Тип: Изобретение
Номер охранного документа: 0002595320
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.635d

Волоконно-оптический гироскоп

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических гироскопах интерферометрического типа. Технический результат заключается в компенсации оптических шумов источника излучения, а также уменьшении дрейфа сигнала ВОГ за счет уменьшения амплитуды волн...
Тип: Изобретение
Номер охранного документа: 0002589450
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8895

Акустооптический волоконный кабель и способ его изготовления

Изобретения относятся к области акустических измерений и касаются акустооптического кабеля. Кабель включает в себя несколько секций волоконно-оптических акустооптических сенсоров. Сенсоры включают в себя оптико-электронный модуль, оптически соединенный с расположенным внутри полимерной основы...
Тип: Изобретение
Номер охранного документа: 0002602422
Дата охранного документа: 20.11.2016
26.08.2017
№217.015.ddc8

Волоконно-оптическое интерферометрическое устройство для регистрации фазовых сигналов

Изобретение относится к области волоконной оптики и может быть использовано при создании волоконно-оптических интерферометрических датчиков для регистрации фазовых сигналов (вибраций, акустических воздействий). Изобретение решает задачу создания волоконно-оптического интерферометрического...
Тип: Изобретение
Номер охранного документа: 0002624837
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e371

Способ повышения точности волоконно-оптического гироскопа с закрытым контуром

Изобретение относится к области приборостроения и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных на основе интерферометра Саньяка. Технический результат - повышение точности. Для этого в...
Тип: Изобретение
Номер охранного документа: 0002626228
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e3f7

Способ повышения точности волоконно-оптического гироскопа с закрытым контуром

Изобретение относится к области волоконной оптики и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных по схеме интерферометра Саньяка. Технический результат – повышение точности...
Тип: Изобретение
Номер охранного документа: 0002626019
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.011a

Способ оценки качества шунгитового сырья

Изобретение относится к области контрольно-измерительной техники и касается способа оценки качества шунгитового сырья. Способ заключается в том, что формируют цветное изображение образца шунгитового сырья с получением трех двумерных массивов целых чисел в цветовом пространстве RGB, каждый из...
Тип: Изобретение
Номер охранного документа: 0002629652
Дата охранного документа: 30.08.2017
04.04.2018
№218.016.36a7

Способ частотно-импульсной модуляции полупроводникового лазерного источника оптического излучения для опроса оптических интерферометрических датчиков

Изобретение относится к области оптических измерительных приборов и может быть использовано в оптических интерферометрических датчиках с полупроводниковыми источниками оптического излучения для формирования оптических импульсов и частотной модуляции оптической несущей без использования...
Тип: Изобретение
Номер охранного документа: 0002646420
Дата охранного документа: 05.03.2018
Showing 31-31 of 31 items.
30.05.2023
№223.018.7421

Способ измерения фазового сигнала двулучевого волоконно-оптического интерферометра

Изобретение относится к области волоконно-оптических измерительных приборов и может быть использовано для повышения точности измерения фазового сигнала в двухлучевых интерферометрах Майкельсона или Маха-Цендера и массивах волоконно-оптических датчиков на их основе. Способ измерения фазового...
Тип: Изобретение
Номер охранного документа: 0002742106
Дата охранного документа: 02.02.2021
+ добавить свой РИД