×
13.01.2017
217.015.8424

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ДИОКСИДА ВАНАДИЯ

Вид РИД

Изобретение

№ охранного документа
0002602896
Дата охранного документа
20.11.2016
Аннотация: Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата аммония NHVO и органической кислоты и последующий отжиг полученного продукта в вакууме или инертной атмосфере. В качестве органической кислоты используют лимонную кислоту. Гидротермальную обработку осуществляют при рН 4,0-5,5 и температуре 180-220°С в течение 2-20 мин. Отжиг продукта проводят при температуре 350-370°С в течение 5-60 мин. Изобретение позволяет уменьшить температуру и длительность при получении диоксида ванадия моноклинной сингонии, получить частицы с морфологией гофрированных нанопластин. 2 ил., 4 пр.

Изобретение относится к способу получения наночастиц, в частности диоксида ванадия VO2, который может быть использован как термохромный материал (изменяет оптические свойства под воздействием температур), катодный материал литиевых источников тока, в качестве терморезисторов, термореле, переключающих элементов.

Известно, что диоксид ванадия VO2 образует различные полиморфные формы, включая VO2(M), VO2(R), VO2(В), VO2(А). Наиболее интересной с практической точки зрения является фаза диоксид ванадия моноклинной сингонии VO2(М), претерпевающая структурное превращение (фазовый переход первого рода) при 68°С. Диоксид ванадия моноклинной сингонии при температуре выше 68°С превращается в VO2(R) тетрагональной сингонии. Это превращение, обусловленное изменением электронных свойств, проявляется в скачкообразном переходе диоксида ванадия из полупроводникового состояния в металлическое. При таком переходе наблюдается скачок как оптических, так и электрических свойств материала. Так, показатель преломления меняется от 2,5 в моноклинной фазе до 2,0 в тетрагональной фазе, а скачок электропроводности при фазовом переходе для монокристаллов диоксида ванадия составляет ~ 105. На скачкообразном изменении физико-химических свойств диоксида ванадия при фазовом переходе полупроводник-металл при температуре 68°С основано его практическое использование, например, в качестве рабочих элементов ограничителей лазерного излучения и среды для записи оптической информации (Бугаев А.А., Захарченя Б.П., Чудновский Ф.А. Фазовый переход металл-полупроводник и его применение. Л.: Наука. 1979. 183 с.). Перспективным направлением практического использования VO2 является создание на основе диоксида ванадия термохромных окон (Kam K.С, Cheetham А.K. Thermochromic VO2 nanorods and other vanadium oxides nanostructures // Mater. Res. Bull. 2006. V. 41. P. 1015-1021). Фазовый переход металл-полупроводник в VO2 и обусловленный им эффект электрического переключения могут быть использованы для создания запоминающих устройств, высокочастотных транзисторов, сенсорных устройств (Alfred-Duplan С, Musso J., Gavarri J.R., Cesari С. Variable electrical properties in composites: application to vanadium dioxide pigments in a polyethylene host // J. Solid State Chem. 1994. V. 110. P. 6-14). Причем существенным фактором для практического использования является морфология получаемых частиц.

Известен способ получения диоксида ванадия VO2 моноклинной сингонии (Патент CN 102795668, МПК C01G 1/02, 2012 г.). В известном способе диоксид ванадия синтезируют в две стадии. На первой стадии к водному раствору метаванадата аммония NH4VO3 концентрацией 0,01-30 масс.%, нагретому до температуры 50-100°С, при перемешивании добавляют одно или более органическое соединение (глюкоза, лактоза, мальтоза, формальдегид, уксусный альдегид, пропаналь, этиленгликоль, гидразин гидрат, лимонная кислота, винная кислота), выполняющее роль восстановителя, в соотношении восстановитель : метаванадат аммония=1:2÷3:1. Затем к полученной смеси через 5-300 мин в количестве 0,01-20 вес.% добавляют промотор, способствующий протеканию целевой реакции. В качестве промотора используются аммонийные соли (хлорид аммония NH4Cl, карбонат аммония (NH4)2СО3, гидрокарбонат аммония NH4HCO3, сульфат аммония (NH4)2SO4, нитрат аммония NH4NO3, фторид аммония NH4F). В результате образуется триванадат аммония NH4V3O8 пурпурного цвета, который промывают, фильтруют и высушивают на воздухе при 50-90°С. На второй стадии процесса получения диоксида ванадия проводят разложение прекурсора (триванадата аммония NH4V3O8) в вакууме или инертной атмосфере при 400-900°С и скорости нагрева 3-15°С/мин в течение 5-300 мин. Указанный способ позволяет получать диоксид ванадия, имеющий достаточно узкий температурный интервал фазового перехода из моноклинной сингонии в тетрагональную, составляющий 1-3°С.

Однако известный способ не позволяет получить частицы наноразмерного диапазона. Кроме того, недостатком известного способа является его осуществление при достаточно высоких температурах. Использование повышенных температур обусловлено использованием ванадиевого прекурсора (триванадат аммония NH4V3O8), в котором ионы ванадия имеют высшую степень окисления (5+).

Наиболее близким к предлагаемому техническому решению является способ получения диоксида ванадия моноклинной сингонии с морфологией наноремней (Guo D., Hu С, Yang Q., Hua Н., Li W., Kong С. Room-temperature ferromagnetism properties of monoclinic VO2(M1) nanobelts. Mater. Res. Bull. 2014. V. 53. P. 102-106). Синтез проводят в две стадии. На первой стадии проводят гидротермальную обработку смеси метаванадата аммония NH4VO3 и муравьиной кислоты НСООН при рН=1-2 и температуре 200°С в течение 48 часов. Затем полученный продукт отжигают в вакууме при 500°С в течение 1 часа. В результате получают диоксид ванадия VO2(М) моноклинной сингонии с морфологией наноремней шириной до 100 нм и длиной примерно 2 мкм.

Недостатком известного способа является длительность первой стадии процесса, а также возможность получения только традиционной для диоксида ванадия морфологии наночастиц.

Таким образом, перед авторами стояла задача разработать более простой и технологичный способ получения диоксида ванадия моноклинной сингонии, обеспечивающий получение наночастиц иной морфологии, чем известный способ.

Поставленная задача решена в предлагаемом способе получения наночастиц диоксида ванадия моноклинной сингонии, включающем гидротермальную обработку смеси метаванадата аммония NH4VO3 и органической кислоты с последующим отжигом полученного продукта в вакууме или инертной атмосфере, в котором в качестве органической кислоты используют лимонную кислоту и обработку осуществляют при рН=4,0-5,5 и температуре 180-220°C с последующем отжигом полученного продукта при температуре 350-370°С.

В настоящее время из патентной и научно-технической литературы не известен способ получения диоксида ванадия моноклинной сингонии VO2(М) с использованием в качестве одного из исходных ингредиентов лимонной кислоты в предлагаемых авторами условиях.

Экспериментальные исследования, проведенные авторами, позволили разработать простой и технологичный способ получения наночастиц диоксида ванадия моноклинной сингонии с морфологией гофрированных пластин, в процессе которого в результате гидротермально-микроволновой обработки метаванадата аммония и лимонной кислоты получают в качестве промежуточного продукта ванадат аммония со смешанной степенью окисления ванадия: NH4V24+V5+O7. При отжиге в вакууме или инертной атмосфере происходит термолиз ванадата аммония, в результате которого получают наночастицы диоксида ванадия моноклинной сингонии (см. фиг. 1) с морфологией гофрированных пластин (см. фиг. 2).

Таким образом, использование лимонной кислоты в качестве исходного обеспечивает получение в качестве промежуточного продукта ванадата аммония со смешенной степенью окисления NH4V24+V5+O7, что в свою очередь позволяет получать диоксид ванадия с уникальной морфологией гофрированных нанопластин. Такая морфология наночастиц диоксид ванадия получена впервые, что позволяет расширить морфологическое разнообразие наноструктур на основе VO2. Изменение морфологии является действенным способом управления функциональными характеристиками наноматериалов, поскольку является отражением состояния поверхностных атомов, предопределяющих особенности физико-химических свойств.

Авторами экспериментально было установлено, что существенным в процессе получения диоксида ванадия моноклинной сингонии является соблюдение заявляемых параметров процесса. Так, при снижении температуры отжига ниже 350°С в конечном продукте наблюдается появление примесных фаз (V3O7, V6O13). При повышении температуры выше 370°С в конечном продукте появляются фаза V2O3. Также авторами экспериментально установлено, что в заявляемом температурном интервале нагрев можно проводить с произвольной скоростью.

Предлагаемый способ может быть осуществлен следующим образом. Берут порошок метаванадата аммония NH4VO3 и растворяют его в дистиллированной воде. К полученному раствору добавляют по каплям водный раствор лимонной кислоты C6H8O7 до установления рН=4,0-5,5. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr), нагревают до 200-220°С и выдерживают при этой температуре 2-20 мин. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. Получают ванадиевый прекурсор (NH4V3O7), который загружают в печь, нагревают в вакууме или в инертной атмосфере до температуры 350-370°С и выдерживают при этой температуре в течение 5-60 мин. Полученный продукт охлаждают до комнатной температуры. Аттестацию полученного продукта проводят с помощью рентгенофазового анализа (РФА) и сканирующей электронной микроскопии (СЭМ). По данным РФА полученный порошок черного цвета является диоксидом ванадия VO2(М) моноклинной сингонии с параметрами элементарной ячейки а=5,752 Å, b=4,526 Å, с=5,382 Å, β=122,6°. Согласно сканирующей электронной микроскопии частицы диоксида ванадия имеют морфологию гофрированных нанопластин длиной до 2 мкм и толщиной 150-250 нм.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 0,2 г порошка метаванадата аммония NH4VO3 и растворяют его в 15 мл дистиллированной воды. К полученному раствору добавляют по каплям водный раствор лимонной кислоты C6H8O7 до установления рН=4,0. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr), нагревают до 200°С и выдерживают 2 мин. После этого микроволновой реактор автоматически охлаждается сжатым воздухом до комнатной температуры. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. 0,1 г полученного порошка ванадата аммония NH4V3O7, загружают в печь, нагревают в вакууме до температуры 350°С и выдерживают при этой температуре в течение 60 мин. Полученный продукт охлаждают до комнатной температуры. По данным РФА и СЭМ полученный продукт имеет состав VO2(М) моноклинной сингонии с параметром кристаллической решетки а=5,752 Å, b=4,526 Å, с=5,382 Å, β=122,6° и состоит из нанопластин длиной до 2 мкм и толщиной 150-250 нм.

На фиг. 1 представлена рентгенограмма VO2(М).

На фиг. 2 приведено изображение гофрированных нанопластин диоксида ванадия, полученное на сканирующем электронном микроскопе высокого разрешения.

Пример 2. Берут 0,2 г порошка метаванадата аммония NH4VO3 и растворяют его в 15 мл дистиллированной воды. К полученному раствору добавляют по каплям водный раствор лимонной кислоты C6H8O7 до установления рН=5,5. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr), нагревают до 180°С и выдерживают 20 мин. После этого микроволновой реактор автоматически охлаждается сжатым воздухом до комнатной температуры. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. 0,1 г полученного порошка ванадата аммония NH4V3O7 загружают в печь, нагревают в токе азота до температуры 370°С, выдерживают при этой температуре в течение 5 мин. Полученный продукт охлаждают до комнатной температуры. По данным РФА и СЭМ полученный продукт имеет состав VO2(М) моноклинной сингонии с параметром кристаллической решетки а=5,752 Å, b=4,526 Å, с=5,382 Å, β=122,6° и состоит из гофрированных нанопластин длиной до 2 мкм и толщиной 150-250 нм.

Пример 3. Берут 0,2 г порошка метаванадата аммония NH4VO3 и растворяют его в 15 мл дистиллированной воды. К полученному раствору добавляют по каплям водный раствор лимонной кислоты C6H8O7 до установления рН=5,0. Полученную гомогенную смесь помещают в микроволновой реактор Monowave 300 (Anton Parr), нагревают до 220°C и выдерживают 10 мин. После этого микроволновой реактор автоматически охлаждается сжатым воздухом до комнатной температуры. Полученный продукт фильтруют, промывают водой и сушат на воздухе при 50°С. 0,1 г полученного порошка ванадата аммония NH4V3O7 загружают в печь, нагревают в токе аргона до температуры 370°С и выдерживают при этой температуре в течение 30 мин. Полученный продукт охлаждают до комнатной температуры. По данным РФА и СЭМ полученный продукт имеет состав VO2(М) моноклинной сингонии с параметром кристаллической решетки а=5,752 Å, b=4,526 Å, с=5,382 Å, β=122,6° и состоит из гофрированных нанопластин длиной до 2 мкм и толщиной 150-250 нм.

Таким образом, авторами предлагается простой и технологичный способ получения диоксида ванадия моноклинной сингонии при невысоких температурах в течение достаточно короткого времени, обеспечивающий получение продукта с уникальной морфологией гофрированных нанопластин.

Работа выполнена в рамках проекта Миноборнауки РФ (проект №14.613.21.0002).

Способ получения наночастиц диоксида ванадия моноклинной сингонии, включающий гидротермальную обработку смеси метаванадата аммония NHVO и органической кислоты с последующим отжигом полученного продукта в вакууме или инертной атмосфере, отличающийся тем, что в качестве органической кислоты используют лимонную кислоту и гидротермальную обработку осуществляют при рН=4,0-5,5 и температуре 180-220°С в течение 2-20 мин с последующем отжигом полученного продукта при температуре 350-370°С в течение 5-60 мин.
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ДИОКСИДА ВАНАДИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 102 items.
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
27.12.2016
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.6105

Способ получения нанокристаллического сульфида свинца

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида...
Тип: Изобретение
Номер охранного документа: 0002591160
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8757

Способ получения наностержней диоксида гафния

Изобретение относится к способам получения наноразмерных материалов, а именно к способу получения диоксида гафния с морфологией наностержней, который используется в полупроводниковой индустрии как материал, обладающий большой диэлектрической проницаемости, в качестве каталитической подложки и...
Тип: Изобретение
Номер охранного документа: 0002603788
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
Showing 21-30 of 49 items.
20.12.2015
№216.013.9a52

Сплав для получения водорода на основе алюминия

Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан-...
Тип: Изобретение
Номер охранного документа: 0002571131
Дата охранного документа: 20.12.2015
27.12.2016
№216.013.9e2d

Способ получения нанодисперсного ферромагнитного материала

Изобретение относится к химической технологии. Способ включает упаривание смеси водных растворов цинк- и железосодержащих солей карбоновой кислоты, взятых в стехиометрическом соотношении. В качестве солей карбоновой кислоты используют формиат цинка состава Zn(НСОО)·2НО и формиат железа состава...
Тип: Изобретение
Номер охранного документа: 0002572123
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.6105

Способ получения нанокристаллического сульфида свинца

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида...
Тип: Изобретение
Номер охранного документа: 0002591160
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8757

Способ получения наностержней диоксида гафния

Изобретение относится к способам получения наноразмерных материалов, а именно к способу получения диоксида гафния с морфологией наностержней, который используется в полупроводниковой индустрии как материал, обладающий большой диэлектрической проницаемости, в качестве каталитической подложки и...
Тип: Изобретение
Номер охранного документа: 0002603788
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
+ добавить свой РИД