×
13.01.2017
217.015.8396

Результат интеллектуальной деятельности: МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ СПЕКТРАЛЬНЫХ ЦИФРОВЫХ ГОЛОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ ОПТИЧЕСКИ ПРОЗРАЧНЫХ МИКРООБЪЕКТОВ

Вид РИД

Изобретение

№ охранного документа
0002601729
Дата охранного документа
10.11.2016
Аннотация: Способ получения спектральных цифровых голографических изображений, реализуемый устройством, заключается в формировании коллимированного широкополосного светового пучка, его селективной дифракции в акустооптическом фильтре, делении его на два пучка, пропускании одного из них через исследуемый объект. Далее производят сведение двух пучков в один с совмещением направления распространения волновых фронтов. Обеспечивают селективную дифракцию светового излучения во втором акустооптическом фильтре и регистрацию дифрагированного пучка матричным приемником излучения. Технический результат заключается в обеспечении множества узких спектральных полос регистрации с использованием всего одного широкополосного источника света, устранении пространственно-спектральных искажений изображений для их прецизионного пространственного совмещения, снижении чувствительности к внешним засветкам, повышении стабильности работы прибора и повышении спектрального контраста. 2 н. и 3 з.п. ф-лы, 1 ил.

Предлагаемое техническое решение относится к устройствам получения цифровых голографических изображений оптически прозрачных микрообъектов, в частности цифровых голограмм на разных длинах волн.

Методы цифровой голографической микроскопии (ЦГМ) эффективно используются для неинвазивной диагностики биообъектов (например, в цитологии и морфологии) и для неразрушающих исследований технических объектов и материалов (анализ деформаций, микротрещин и т.п.).

Регистрация цифровых голографических изображений объектов в произвольных спектральных полосах позволяет контрастно выделять элементы этих объектов, имеющие разные физико-химические свойства, и определять их положение и геометрические характеристики.

Методы ЦГМ позволяют одновременно получать информацию о характеристиках поглощения/прозрачности исследуемого объекта и о его фазовой структуре. При этом в плоскости регистрации на фотоприемнике содержатся наложенные друг на друга изображения объекта в различных интерференционных порядках: первом, нулевом и минус первом. Таким образом, восстановленные по сигналу матричного фотоприемника интерференционные изображения неизбежно содержат не только информацию об исследуемом слое, но и фоновый сигнал от всего образца, что снижает их пространственный контраст и информативность. Для разделения различных порядков применяются внеосевые схемы регистрации, требующие высокой точности сборки и юстировки системы. Также для этого используется метод фазового сдвига, заключающийся в записи трех или более цифровых голограмм, сдвинутых по фазе относительно друг друга на известную величину, и их дальнейшей совместной цифровой обработке [М. Gross, M. Atlan, Ε. Absil. Noise and aliases in off-axis and phase-shifting holography. // Applied Optics, 2008. 47(11). P. 1757-1766].

Многоволновые методы ЦГМ, в которых регистрируется ряд цифровых голограмм на разных длинах волн, позволяют получить дополнительную информацию об объекте. В частности, из совокупности цифровых голограмм, записанных на длинах волн, расположенных через равные интервалы по шкале волновых чисел, могут быть реконструированы трехмерные изображения с высоким разрешением по глубине образца [патент США 7,127,109 B1 от 24.10.2006]. При этом вычисленные трехмерные изображения оптически прозрачных микроструктур являются монохромными, т.е. не содержат спектральной информации.

Зависимость оптических спектральных свойств объекта от его физико-химического состава позволяет выделять разные по составу элементы объекта, выявляя его структуру. Поэтому неоднократно предлагались методы и предпринимались попытки получения многоцветных и спектральных голографических изображений, например, путем использования нескольких когерентных (лазерных) источников света, дающих монохроматическое излучение на разных длинах волн [патент США 6,760,134 B1 от 06.07.2004]. Однако до сих пор не существует методов регистрации голографических мультиспектральных изображений, где спектральная перестройка могла бы осуществляться почти непрерывно в некотором диапазоне длин волн, т.е. с шагом, не превышающим ширину спектральной полосы каждого изображения. Для реализации этого на практике число разрешимых спектральных полос должно составлять хотя бы несколько десятков.

Известна лишь одна реализация подобного подхода, заключающаяся в использовании схемы «на отражение» на основе интерферометра Майкельсона, в осветительном канале которого установлен перестраиваемый акустооптический (АО) фильтр [G. Sheoran, S. Dubey, Α. Anand et al. Swept-source digital holography to reconstruct tomographic images // Optic letters, 2009. V. 34(12). P. 1879-1881]. Данная схема имеет существенный недостаток, проявляющийся в пространственно-спектральных искажениях изображения и, в частности, в спектральном сдвиге изображения при перестройке по длине волны [V. Pozhar, A. Machihin. Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals // Applied Optics, 2012. V. 51(19). P. 4513-4519]. Еще одним недостатком этой технической реализации является заметное (≈20%) пропускание излучения вне полосы пропускания (центрального максимума) вследствие того, что классическая функция пропускания АО фильтра описывается функцией sinc2(x)≡sin2(x)/x2, которая имеет значительные боковые максимумы. Эти проблемы связаны с использованием АО фильтра и не зависят от схемы интерферометра: «на отражение» или «на проход».

Предлагаемое техническое решение направлено на устранение указанных недостатков схем. Наиболее близким к предлагаемому техническому решению является решение, описанное в патенте США US 8687253 B2 от 13.12.11, в котором реализована схема цифровой голографии на проход на основе интерферометра Маха-Цендера (ИМЦ) с возможностью за счет изменения длины волны когерентного/монохроматического источника света получить серию голограмм на разных длинах волн.

Решаемая данным техническим решением задача - получение цифровых голографических изображений оптически прозрачных микрообъектов на разных длинах волн.

Технический результат изобретения, который может быть получен, состоит в следующем: в уменьшении пространственно-спектральных искажений изображений до уровня, допускающего их пространственное совмещение, в снижении чувствительности к внешним засветкам за счет повторной спектральной фильтрации излучения непосредственно перед его регистрацией; в повышении спектрального контраста голограмм; в том, что регистрация множества узких спектральных полос осуществляется с использованием всего одного источника света. Этот результат достигается за счет использования широкополосного источника света в совокупности с перестраиваемыми АО фильтрами и двукратной последовательной фильтрации света в паре АО фильтров, расположенных на входе (в осветительном канале) и выходе (в приемном канале) ИМЦ.

Метод регистрации спектральных голографических изображений оптически прозрачных микрообъектов состоит в формировании коллимированного широкополосного светового пучка, его селективной дифракции в АО фильтре, делении его на два пучка, пропускании одного из них через исследуемый объект, дальнейшем сведении двух пучков в один с совмещением направления распространения волновых фронтов, последующей селективной дифракции светового излучения во втором АО фильтре, идентичном первому АО фильтру, развернутому относительно него на 180° в плоскости дифракции и настраиваемому на ту же длину волны, что и первый фильтр, регистрации дифрагированного пучка матричным приемником излучения.

Данный технический результат в части устройства достигают за счет того, что в устройстве, состоящем из размещенных последовательно и оптически связанных осветительного канала с широкополосным источником света и коллимирующей оптической системой, интерферометра Маха-Цендера, содержащего светоделители на входе и выходе, опорное и/или объектное плечи которого содержат систему зеркал, причем объектное плечо содержит систему зеркал с варьируемым расстоянием между ними для регулировки длин оптических путей излучения в плечах, и приемного канала, в котором располагается матричный приемник излучения, в осветительный канал между коллимирующей оптической системой и интерферометром и в приемный канал между интерферометром и матричным приемником излучения помещены АО фильтры, каждый из которых состоит из входного и выходного поляризаторов с ортогонально ориентированными осями поляризации и расположенной между ними АО ячейкой, при этом АО ячейки фильтров имеют полностью идентичную геометрию дифракции и развернуты относительно друг друга на 180° в плоскости дифракции.

В опорном плече между системой зеркал и выходным светоделителем может быть размещен микрообъектив, в фокусе которого установлена точечная диафрагма (пинхол) для формирования сферического опорного фронта.

В объектном плече в параллельном ходе лучей перед исследуемым объектом может быть размещен микрообъектив, в фокусе которого установлена точечная диафрагма (пинхол) для формирования сферического фронта.

Система зеркал содержит пару неподвижных плоских зеркал, пару расположенных на общем основании подвижных зеркал, ориентированных параллельно первым, и блок параллельного перемещения второй пары зеркал.

Изобретение поясняется структурной оптической схемой устройства, представленной на Фиг. 1.

Устройство для регистрации спектральных голографических изображений оптически прозрачных микрообъектов состоит из осветительного канала, интерферометра Маха-Цендера (ИМИ) и приемного канала (на чертеже не оцифрованы). Осветительный канал включает в себя оптически связанные и расположенные последовательно широкополосный источник света 1, коллимирующую оптическую систему 2 для формирования светового пучка нужного диаметра и АО фильтр 3. АО фильтр 3 состоит из двух ортогональных входного (3а) и выходного (3в) поляризаторов и установленной между ними широкоугольной АО ячейки (3б). АО ячейка представляет собой кристалл, в котором возбуждается бегущая ультразвуковая волна, период которой задается частотой, подаваемой на акустический излучатель высокочастотного электрического сигнала. Интерферометр Маха-Цендера (ИМЦ - на чертеже не оцифрован) содержит на входе и входе идентичные полупрозрачные зеркала 4 и 12, используемые в качестве светоделителей. Для изменения направления распространения излучения и обеспечения равенства длин оптических путей излучения в объектном и опорном плечах размещены идентичные зеркала 5-7, 9-11. В опорном плече расположены микрообъектив Па и точечная диафрагма (пинхол) 11, размещенные между зеркалами 11 и 12. В другом (объектном) - микрообъектив 7а, точечная диафрагма (пинхол) 7б и исследуемый объект 8, размещенные между зеркалами 7 и 9. Приемный канал (на чертеже не оцифрован) включает в себя АО фильтр 13, состоящий из ортогональных входного (13а) и выходного(13в) поляризаторов и расположенной между ними АО ячейки (13б), и матричный приемник излучения 14. АО ячейки фильтров 3 и 13 развернуты относительно друг друга на 180° и имеют полностью идентичную геометрию АО взаимодействия.

Пары зеркал 6, 7 и 10, 11 могут размещаться на подвижных основаниях.

Для реализации заявленного метода на входе устройства формируют коллимированный широкополосный световой пучок, осуществляют его спектральную фильтрацию с помощью АО фильтра 3, делят его на два пучка, один из которых пропускают через исследуемый объект, а другой используют в качестве опорной волны для дальнейшего получения голограммы. Затем эти два пучка сводят в один с совмещением направления распространения волновых фронтов, после чего осуществляют его спектральную фильтрацию с помощью АО фильтра 13, который идентичен АО фильтру 3 и при этом развернут относительно него на 180° в плоскости дифракции и который настраивают на ту же длину волны, что и первый фильтр. Селективно продифрагировавший световой пучок регистрируют на матричный приемник излучения.

Совокупность зарегистрированных сигналов во всех пикселях фотоприемника характеризует распределение светового потока по пространству (интерференционную картину в плоскости фотоприемника) и представляет собой цифровую голограмму объекта на длине волны, на которую настроены АО фильтры.

Для решения указанной технической задачи с достижением указанного технического результата на входе устройства располагают широкополосный источник света, оптическую систему для формирования коллимированного светового пучка нужного диаметра и АО фильтр 3, состоящий из двух скрещенных (с ортогонально ориентированными осями поляризации) поляризаторов и установленной между ними АО ячейки (представляющей собой кристалл, в котором возбуждается бегущая ультразвуковая волна, период которой задается частотой, подаваемой на акустический излучатель высокочастотного электрического сигнала). В АО ячейке линейно поляризованный световой пучок дифрагирует с изменением направления линейной поляризации на ортогональную и отклонением направления распространения излучения, длина волны которого определяется периодом ультразвуковой волны. Недифрагированное излучение задерживается выходным поляризатором фильтра. В АО фильтре 3 используется широкоугольная геометрия дифракции, обеспечивающая эффективную дифракцию компонент света, идущих под разными углами, что позволяет впоследствии восстановить угло-частотную структуру объекта.

После АО фильтра узкополосное излучение подается на вход интерферометра Маха-Цендера (ИМЦ), где делится светоделителем на два пучка в соотношении 1:1 по интенсивности и направляется в объектное и опорное плечи ИМЦ.

В объектном плече ИМЦ свет пропускают через исследуемый объект и систему зеркал с варьируемым расстоянием между ними, что позволяет регулировать длину оптического пути света, в частности устанавливать равенство длин оптических путей в объектном и опорном плечах.

В опорном плече свет пропускают через систему зеркал, обеспечивающую фиксированную или варьируемую длину оптического пути, в результате чего образуется опорный волновой фронт излучения в виде плоской волны.

Световые пучки из объектного и опорного плечей ИМЦ пространственно совмещают светоделителем 12 таким образом, чтобы направления распространения волновых фронтов их совпадали. Образованный единый световой пучок направляют на АО фильтр 13, идентичный АО фильтру 3 и развернутый относительно него на 180° в плоскости дифракции, который настраивают на ту же длину волны, что и АО фильтр 3. Таким образом, излучение проходит АО фильтр 13 в противоположном направлении в сравнении с АО фильтром 3, и искажения, вызванные первым АО фильтром, компенсируются во втором. Двойная фильтрация света также позволяет повысить спектральный контраст изображения за счет снижения доли излучения вне основного максимума функции пропускания АО фильтров.

Селективно продифрагировавший световой пучок регистрируют матричным приемником излучения 14. Совокупность зарегистрированных сигналов во всех пикселях фотоприемника характеризует распределение светового потока по пространству (интерференционную картину в плоскости фотоприемника) и представляет собой цифровую голограмму объекта на длине волны, на которую настроены АО фильтры.

Для получения цифрового голографического изображения на другой длине волны осуществляют синхронную перестройку АО фильтров 3 и 13 на требуемую длину волны посредством задания соответствующих частот ультразвука и регистрируют изображение матричным приемником. Обработка спектральных цифровых голографических изображений на разных длинах волн производится классическими методами ЦГМ.

После установки нового объекта в световой пучок оптические длины пути в обоих плечах ИМЦ выравнивают путем перемещения подвижных зеркал.

Исходный пучок света делят первым светоделителем 4 на части, две примерно равные по величине части (оптимально, чтобы интенсивности света в двух каналах на выходе были равны).

В частном случае выполнения устройства получения цифровых голографических изображений в опорном плече свет пропускают через микрообъектив 11а, в фокусе которого установлена точечная диафрагма (пинхол) 11б, в результате чего образуется опорный волновой фронт излучения в виде сферической волны. Далее по зарегистрированной цифровой голограмме посредством обратного преобразования Фурье восстанавливают амплитудно-фазовую структуру объекта.

В другом частном случае выполнения устройства получения цифровых голографических изображений в объектном плече свет пропускают через микрообъектив 7а, в фокусе которого установлена точечная диафрагма (пинхол) 7б, в результате чего в объектном плече волновой фронт излучения принимает вид сферической волны.

Еще в одном частном случае система зеркал выполнена в виде двух пар зеркал, одна из которых расположена на подвижном основании параллельно другой (неподвижной) паре и может перемещаться поступательно вместе с основанием, что позволяет регулировать разность хода в опорном и объектном плечах ИМЦ для компенсации оптической толщины исследуемого объекта.

Устройство работает следующим образом. Рассматриваемый объект помещается в объектное плечо интерферометра. Задается частота ультразвука, подаваемая на АО ячейки и соответствующая требуемой длине волны света. На выходе интерферометра появляются два совмещенных световых одинаково поляризованных пучка, формирующие интерференционную картину. Это пространственное распределение на заданной длине волны регистрируется матричным приемником излучения.

После этого задается другая частота ультразвука, соответствующая следующей длине волны, и регистрируется пространственное распределение на этой длине волны. Процесс повторяется на всех длинах волн, подлежащих анализу.

В дальнейшем каждое из изображений обрабатывается методами цифровой обработки изображения.

Хотя заявляемое в качестве изобретения устройство описано на примере его конкретного варианта осуществления, для специалистов будут ясны возможности многочисленных модификаций данного устройства, не выходящие за границы идеи и объема правовой охраны изобретения, определяемые прилагаемой формулой.


МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ СПЕКТРАЛЬНЫХ ЦИФРОВЫХ ГОЛОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ ОПТИЧЕСКИ ПРОЗРАЧНЫХ МИКРООБЪЕКТОВ
МЕТОД И УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ СПЕКТРАЛЬНЫХ ЦИФРОВЫХ ГОЛОГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ ОПТИЧЕСКИ ПРОЗРАЧНЫХ МИКРООБЪЕКТОВ
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
27.02.2013
№216.012.2c7d

Акустооптический модулятор

Изобретение относится к акустооптике и лазерной технике, в частности к акустооптическому модулятору пучка оптического излучения. Модулятор содержит кристаллический светозвукопровод с размещенным на его грани ультразвуковым излучателем и двумя боковыми гранями оптического качества для ввода и...
Тип: Изобретение
Номер охранного документа: 0002476916
Дата охранного документа: 27.02.2013
20.10.2013
№216.012.7774

Устройство обнаружения работы лазерной акустической локационной системы несанкционированного съема речевой информации

Изобретение относится к области оптики, в частности к устройствам защиты информации закрытых помещений от прослушивания и записи с использованием лазерных акустических локационных систем. Технический результат состоит в повышении своевременности обнаружения факта работы лазерной акустической...
Тип: Изобретение
Номер охранного документа: 0002496240
Дата охранного документа: 20.10.2013
27.08.2014
№216.012.ee30

Фотометр пламенный

Изобретение относится к области фотометрии и касается пламенного фотометра. Фотометр включает горелку, оснащенную устройством впрыска раствора исследуемого вещества. Горелка последовательно связана с оптической системой передачи светового потока, диспергирующим элементом, фотоприемным...
Тип: Изобретение
Номер охранного документа: 0002526795
Дата охранного документа: 27.08.2014
10.02.2016
№216.014.c589

Способ получения оптических трехмерных и спектральных изображений микрообъектов и устройство для его осуществления

Способ получения оптических трёхмерных и спектральных изображений микрообъектов включает в себя коллимирование широкополосного оптического излучения источника, разделение на два пучка - референтный и объектный, формирование интерференционной картины за счёт сведения указанных пучков,...
Тип: Изобретение
Номер охранного документа: 0002574791
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c632

Акустооптическое устройство для получения спектральных стереоизображений с перестройкой по спектру

Изобретение относится к области стереоскопии, в частности к получению и регистрации спектральных стереоизображений предметов, объектов. На входе устройства установлена двухапертурная диафрагма, формирующая два световых пучка, выходящих из объекта под разными углами. Входной объектив...
Тип: Изобретение
Номер охранного документа: 0002578372
Дата охранного документа: 27.03.2016
26.08.2017
№217.015.e2fc

Метод и устройство для регистрации изображений фазовых микрообъектов в произвольных узких спектральных интервалах

Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Способ заключается в том, что прошедшее через микрообъект...
Тип: Изобретение
Номер охранного документа: 0002626061
Дата охранного документа: 21.07.2017
Showing 1-10 of 17 items.
27.02.2013
№216.012.2c7d

Акустооптический модулятор

Изобретение относится к акустооптике и лазерной технике, в частности к акустооптическому модулятору пучка оптического излучения. Модулятор содержит кристаллический светозвукопровод с размещенным на его грани ультразвуковым излучателем и двумя боковыми гранями оптического качества для ввода и...
Тип: Изобретение
Номер охранного документа: 0002476916
Дата охранного документа: 27.02.2013
20.10.2013
№216.012.7774

Устройство обнаружения работы лазерной акустической локационной системы несанкционированного съема речевой информации

Изобретение относится к области оптики, в частности к устройствам защиты информации закрытых помещений от прослушивания и записи с использованием лазерных акустических локационных систем. Технический результат состоит в повышении своевременности обнаружения факта работы лазерной акустической...
Тип: Изобретение
Номер охранного документа: 0002496240
Дата охранного документа: 20.10.2013
27.08.2014
№216.012.ee30

Фотометр пламенный

Изобретение относится к области фотометрии и касается пламенного фотометра. Фотометр включает горелку, оснащенную устройством впрыска раствора исследуемого вещества. Горелка последовательно связана с оптической системой передачи светового потока, диспергирующим элементом, фотоприемным...
Тип: Изобретение
Номер охранного документа: 0002526795
Дата охранного документа: 27.08.2014
10.02.2016
№216.014.c589

Способ получения оптических трехмерных и спектральных изображений микрообъектов и устройство для его осуществления

Способ получения оптических трёхмерных и спектральных изображений микрообъектов включает в себя коллимирование широкополосного оптического излучения источника, разделение на два пучка - референтный и объектный, формирование интерференционной картины за счёт сведения указанных пучков,...
Тип: Изобретение
Номер охранного документа: 0002574791
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c632

Акустооптическое устройство для получения спектральных стереоизображений с перестройкой по спектру

Изобретение относится к области стереоскопии, в частности к получению и регистрации спектральных стереоизображений предметов, объектов. На входе устройства установлена двухапертурная диафрагма, формирующая два световых пучка, выходящих из объекта под разными углами. Входной объектив...
Тип: Изобретение
Номер охранного документа: 0002578372
Дата охранного документа: 27.03.2016
26.08.2017
№217.015.e2fc

Метод и устройство для регистрации изображений фазовых микрообъектов в произвольных узких спектральных интервалах

Изобретение относится к технологиям количественной фазовой микроскопии и предназначено для измерения пространственного распределения фазовой задержки, вносимой прозрачным микрообъектом, в произвольных узких спектральных интервалах. Способ заключается в том, что прошедшее через микрообъект...
Тип: Изобретение
Номер охранного документа: 0002626061
Дата охранного документа: 21.07.2017
09.06.2018
№218.016.5ace

Триангуляционный метод измерения площади участков поверхности внутренних полостей объектов известной формы

Изобретение относится к технологиям визуально-измерительного контроля (ВИК), позволяющим по зарегистрированным изображениям обнаружить искомые элементы поверхности контролируемых объектов в труднодоступных внутренних полостях различных технических устройств и сооружений и измерить...
Тип: Изобретение
Номер охранного документа: 0002655479
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aef

Способ и устройство регистрации пространственного распределения оптических характеристик труднодоступных объектов

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления...
Тип: Изобретение
Номер охранного документа: 0002655472
Дата охранного документа: 28.05.2018
02.12.2018
№218.016.a28f

Двухкомпонентный интерферометр общего пути

Устройство предназначено для регистрации пространственного распределения фазовой задержки, вносимой оптически прозрачным микрообъектом, и измерению его характеристик. Устройство состоит из оптически связанных и расположенных последовательно первого оптического компонента, фокусирующего...
Тип: Изобретение
Номер охранного документа: 0002673784
Дата охранного документа: 29.11.2018
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
+ добавить свой РИД