×
13.01.2017
217.015.8315

Результат интеллектуальной деятельности: ПРИМЕНЕНИЕ ГИПЕРРАЗВЕТВЛЕННОГО ПОЛИЛИЗИНА В КАЧЕСТВЕ ИНГИБИТОРА ГЛИНИСТЫХ СЛАНЦЕВ

Вид РИД

Изобретение

№ охранного документа
0002601671
Дата охранного документа
10.11.2016
Аннотация: Изобретение относится к добыче нефти и газа. Технический результат - нетоксичность, биоразлагаемость ингибитора глинистых сланцев. Гиперразветвленный полилизин применяют в развитии, эксплуатации и завершении подземных залежей минерального масла и природного газа и в глубоких скважинах, особенно в качестве ингибитора глинистых сланцев в основанных на воде буровых глинистых растворах, растворах, используемых при завершении скважины, или жидкостях для воздействия на пласт, степень разветвления полилизина составляет от 10 до 99.9%, предпочтительно от 20 до 99%, более предпочтительно от 20 до 95%, молекулярная масса полилизина находится в диапазоне 500-10000 г/моль, предпочтительно в диапазоне 750-7500 г/моль, более предпочтительно в диапазоне 750-5000 г/моль, и особенно в диапазоне 750-1500 г/моль. 4 з.п. ф-лы, 1 ил., 4 табл., 6 пр.

Настоящее изобретение относится к применению гиперразветвленного полилизина в развитии, эксплуатации и завершении подземных залежей минерального масла и природного газа, и в глубоких скважинах.

Глинистый сланец - прекрасная непроницаемая осадочная порода, состоящая из глины и других минералов. Это - одна из наиболее распространенных горных пород, которые нужно сверлить в месторождениях нефти, чтобы добраться до нефтяного слоя. Из-за его высокого процента ионнозаряженной глины, сланцу присуща большая тенденция раздуваться от воды. Это делает его очень проблематичной горной породой в глубоких скважинах с основанными на воде буровыми глинистыми растворами. "Ингибитор глинистых сланцев" обладает функцией препятствования тому, чтобы глинистый сланец раздувался от воды.

ЕР 0634468 А1 описывает добавки для буровых глинистых растворов и способы, которые предотвращают набухание глины в подземных скважинах. В одном варианте осуществления, тригидроксиалкиламин реагирует с алкилированным галидом или растворимьм в воде четвертичным амином до получения кватернизированного тригидроксиалкиламина. Продукты реакции могут также включать конденсированные продукты реакции кватернизированных тригидроксиалкиламинов. В дополнительном варианте осуществления применяется холиновое производное. Кватернизированные продукты реакции и холиновые производные известны низкой токсичностью и хорошей совместимостью с анионными компонентами бурового глинистого раствора. Есть сообщения об улучшении реологических свойств буровых глинистых растворах и улучшении экологической совместимости и совместимости с буровыми глинистыми растворами.

US 6,484,821 В1 описывает основанный на воде буровой глинистый раствор для бурения посредством формирований, включающих водонабухаемый глинистый сланец. Он предпочтительно включает основанную на воде непрерывную фазу, утяжеляющий материал и ингибирующий набухание глинистых пород агент формулы H2N-R-{OR′}х-Y, где R и R′ каждый представляют собой алкиленовые группы, имеющие 1-6 атомов углерода и х соответствует величине от около 1 до около 25. Группа V должна быть аминной или алкоксигруппой, предпочтительно первичным амином или метоксигруппой. Ингибирующий набухание глинистых пород агент должен присутствовать в концентрации, достаточной для сокращения набухания глинистого сланца. ЕР 1257610 В1, который является параллельным с US 6,484,821 В1, более точно определяет соединение формулы H2N-СН(СН3)СН2-{ОСН2СН(СН3)}х-NH2 в качестве ингибитора глинистых сланцев, где х имеет величину меньше чем 15.

WO 2008/031806 А1 описывает нейтральные или соленого типа продукты конденсации С4-10-дикарбоновых кислот с алканоламинами, диаминами или полиалкиленаминами в качестве ингибиторов глинистых сланцев.

US 5,149,690 описывает добавки бурового глинистого раствора, которые подавляют набухание сланца в форме полиамидов и полиаминокислот как продукты реакции алифатической кислоты с алифатическим полиамином. "Полиаминокислоты", упомянутые там, структурно несравнимы с полилизином, особенно потому что у них есть свободные кислотные функции, тогда как у полилизина есть свободные аминные функции.

Химические материалы для применений в морской прибрежной зоне должны соответствовать строгим экологическим инструкциям. Они должны быть нетоксичными и биоразлагаемыми, и не должны быть биоаккумулируемыми; смотри http://www.cefas.defra.qov.uk, особенно http://www.cefas.defra.gov.uk/industry-information/offshore-chemical-notification-scheme.aspx, http://www.cefas.defraa.gov.uk/industry-information/offshore-chemical-notification-scheme/ocns-ecotoxicology-testing.aspx и http://www.cefas.defraa.gov.uk/industry-information/offshore-chemical-notification-scheme/hazard-assessment.aspx (найдено 01.06.2011).

Проблемой, которая лежала в настоящем изобретении, было обеспечить нетоксичный биоразлагаемый не-биоаккумулируемый выгодный ингибитор глинистых сланцев.

Эта задача достигается при помощи признаков независимого пункта формулы изобретения. Зависимые пункты формулы изобретения относятся к предпочтительным вариантам осуществления.

Было найдено, неожиданно, что гиперразветвленный полилизин, особенно кватернизированный гиперразветвленный полилизин, является очень хорошим ингибитором глинистых сланцев и он также является биоразлатаемым.

Настоящее изобретение обеспечено для применения гиперразветвленного полилизина в развитии, эксплуатации и завершении подземных залежей минерального масла и природного газа, и в глубоких скважинах, особенно в качестве ингибитора глинистых сланцев в основанных на воде буровых глинистых растворах, растворах, используемых при завершении скважины, или жидкостях для воздействия на пласт для интенсификации притока в скважине подземных залежей минерального масла и природного газа.

В контексте настоящего изобретения, родовой термин "полилизин" включает с прямой цепью, разветвленные, гиперразветвленные и дендримерные полилизины. Полилизин представляет собой продукт поликонденсации аминокислотного лизина. Полилизин может иметь следующую общую формулу (I), так как концевая ε-аминофункция молекулы более легко доступна к дополнительной конденсации, чем α-аминогруппа.

Однако α-аминогруппа также проявляет определенную реакционную способность и таким образом получают разветвленные, гиперразветвленные и даже дендримерные полилизины. В нашей заявке WO 2007/060119 А1 мы описываем синтезы, которые приводят к гиперразветвленным полилизинам.

Для определения гиперразветвленных и дендримерных полимеров, также смотри Р.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 и Н. Frey et al., Chemistry - А European Journal, 2000, 6, No. 14, 2499.

Термин "гиперразветвленный" в контексте настоящего изобретения должен быть понят в значении, что степень разветвления (СР) составляет 10-99.9%, предпочтительно 20-99%, более предпочтительно 20-95%. "Дендримерный", напротив, должен быть понят в значении, что степень разветвления составляет 99.9-100%. Эти определения соответствуют определениям согласно WO 2007/060119 А1.

Степень разветвления гиперразветвленного полилизина изобретения определяется как

СР [%]=100*(Т+Z)/(Т+Z+L),

где Т означает среднее число концевых мономерных единиц, Z означает среднее число разветвленных мономерных единиц и L означает среднее число линейных мономерных единиц. Для определения степени разветвления, смотри также Н. Prey et al., Acta Polym. 1997, 48, 30.

Молекулярная масса (Mw) гиперразветвленного полилизина изобретения находится в диапазоне 500-10000 г/моль, предпочтительно в диапазоне 750-7500 г/моль, особенно в диапазоне 750-5000 г/моль и особенно в диапазоне 750- 1500 г/моль.

Атомы азота полилизина предпочтительно кватернизованы С1-4-алкильными группами. Применяемый кватернизирующий агент, например, может быть С1-4-галоалканом, особенно бром- или йодалканом, или диметилсульфатом. Предпочтение отдают фактически полной кватернизации. Это может быть определено, например, применяя аминовое число кватернизированного полилизина, то есть такое количество КОН в мг, которое эквивалентно остающемуся аминовому содержанию 1 г полилизина. Более предпочтительно никакие свободные аминовые функции больше не присутствуют в кватернизированном полилизине.

Полилизин соответственно применяется в концентрации от 1 до 30 г/л, предпочтительно от 3 до 25 г/л и особенно от 5 до 10 г/л воды. Предпочтительно его применяют вместе с водоудерживающими средствами, модификаторами реологии, диспергаторами, разбавителями, смазками и/или другими композициями, обычно применяемыми в буровых глинистых растворах, растворах, используемых при завершении скважины, или жидкостях для воздействия на пласт.

Способность к биоразложению полилизина, применяемая в соответствии с изобретением, измеренная методом, описанным в "OECD Guidelines for Testing of Chemicals - 1992 OECD 306: BiOdegradability in Seawater, Closed Bottle Method", предпочтительно составляет, по меньшей мере, 15% после 28 дней и предпочтительно по меньшей мере 50% после 60 дней.

Настоящее изобретение теперь иллюстрировано подробно при помощи примеров, которые следуют в отношении приложенного рисунка. Рисунок показывает графическое изображение величин по вискозиметру Фэнна 35 согласно Таблице 2.

ПРИМЕРЫ

Получение полилизинов

Пример 1:

В четырехгорлую колбу на 4 л, оборудованную мешалкой, внутренним термометром, газовой входной трубой и нисходящим холодильником с вакуумной связью и собирающим сосудом, загружали 1000 г L-лизин гидрохлорида, 219.1 г твердого гидроксида натрия, 100 г воды и 0.02 г дилаурината дибутилолова, и смесь постепенно нагревали до внутренней температуры 130°С при перемешивании, в ходе которого смесь немного пенилась. После времени реакции 5 часов, воду отгоняли при пониженном давлении (200 мбар), в ходе чего температура постепенно увеличивалась до 160°С и давление уменьшилось до 10 мбар после того, как была отогнана значительная часть воды. После 8 часов, собирали 260 г воды в виде дистиллята. Полимер высокой вязкости выгружали горячим, выливая в алюминиевую посуду.

Для определения распределения молекулярной массы, продукт растворяли в воде, раствор фильтровали и анализировали ГПХ (GPC - gelpermation chromatography). ГПХ проводилась посредством комбинации колонок ОНрак SB-803 HQ и SB-804 HQ (от Shodwx) при добавлении 0.1 моль/л бикарбоната натрия при 30°С с расходом 0.5 мл/мин и полиэтиленоксидом в качестве стандарта. Для определения применяли УФ детектор, который работал при длине волны 230 нм. Значение молекулярной массы определено как Mn=1400 г/моль и Mw=4300 г/моль.

Степень разветвления (СР) была 0.35 (т.е. 35%). Она была определена способом, описанным в М. Scholl, Т.Q. Nguyen, В. Bruchmann, Н.-А Klok, J. Polym. Sci.: Part А: Polym. Chem. 45, 2007, 5494-5508.

Аминовое число (АЧ) определяли на основе DIN 53176. Однако в отличие от определенного метода DIN, он включает титрование смесью ледяной уксусной кислоты/трифторметансульфоновой кислоты и потенциометрическое определение конечной точки. Аминовое число было 278 мг КОН/г.

Пример 2:

В четырехгорлую колбу на 4 л, оборудованную мешалкой, внутренним термометром, газовой входной трубой и нисходящим холодильником с вакуумной связью и собирающим сосудом, загружали 1000 г L-лизин гидрохлорида, 219.1 г твердого гидроксида натрия, 150 г воды и 0.1 г дилаурината дибутилолова, и смесь постепенно нагревали до внутренней температуры 150°С при перемешивании, в ходе которого смесь немного пенилась и воду отгоняли при стандартном давлении. После времени реакции 4 часа, удаление дистиллята продолжалось при пониженном давлении (400 мбар), в ходе чего температура постепенно увеличивалась до 160°С. После 8 часов, 340 г воды собирали в виде дистиллята. Полимер высокой вязкости выгружали горячим, выливая в алюминиевую посуду.

Значение молекулярной массы, аминовое число и степень разветвления были определены согласно детальному описанию Примера 1. Mn=1200 г/моль и Mw=2800 г/моль; АЧ было 310 мг КОН/г и СР была 0.41 (т.е. 41%).

Пример 3:

В четырехгорлую колбу на 4 л, оборудованную мешалкой, внутренним термометром, газовой входной трубой и нисходящим холодильником с вакуумной связью и собирающим сосудом, загружали 1000 г L-лизин гидрохлорида, 219.1 г твердого гидроксида натрия, 150 г воды и 0.02 г дилаурината дибутилолова, и смесь постепенно нагревали до внутренней температуры 130°С при перемешивании, и температура постепенно увеличивалась до 150°С в ходе более чем 5 часов. Во время этого времени реакции, отгоняли 218 г воды при пониженном давлении. Давление затем уменьшали до 200 мбар и внутреннюю температуру увеличивали до 160°С, в ходе чего отгоняли еще 88 г воды. Полимер высокой вязкости выгружали горячим, выливая в алюминиевую посуду.

Значение молекулярной массы, аминовое число и степень разветвления были определены согласно детальному описанию Примера 1. Mn=660 г/моль и Mw=950 г/моль; АЧ было 379 мг КОН/г и СР была 0.57 (т.е. 57%).

Кватернизация полилизинов

Пример 1а:

В колбу на 500 мл, оборудованную мешалкой, сперва загружали полилизин из Примера 1 (100.9 г), который был разбавлен в воде (100.9 г). Постепенно дозировали диметилсульфат (1 моль, 126.1 г). Реакционную смесь перемешивали при комнатной температуре на протяжении двух дней. Преобразование (степень кватернизации) мониторили через аминовое число. После двух дней, аминовое число составляет 0.08 ммоль/г и степень кватернизации составляет 95%. Избыток диметилсульфата гидролизуют при 80°С на протяжении 6 часов. Получают коричневый раствор (280.9 г, содержание твердых веществ 67%).

Пример 2а:

В колбу на 500 мл, оборудованную мешалкой, сперва загружали полилизин из Примера 2 (90.5 г), который был разбавлен в воде (90.5 г). Постепенно дозировали диметилсульфат (1 моль, 126.1 г). Реакционную смесь перемешивали при комнатной температуре на протяжении двух дней. Преобразование (степень кватернизации) мониторили через аминовое число. После двух дней, аминовое число составляет 0.00 ммоль/г и степень кватернизации составляет 100%. Избыток диметилсульфата гидролизуют при 80°С на протяжении 6 часов. Получают коричневый раствор (242.5 г, содержание твердых веществ 70%).

Пример 3а:

В колбу на 500 мл, оборудованную мешалкой, сперва загружали полилизин из Примера 3 (70.4 г), который был разбавлен в воде (74.0 г). Постепенно дозировали диметилсульфат (1 моль, 126.1 г). Реакционную смесь перемешивали при комнатной температуре на протяжении двух дней. Преобразование (степень кватернизации) мониторили через аминовое число. После двух дней, аминовое число составляет 0.00 ммоль/г и степень кватернизации составляет 100%. Избыток диметилсульфата гидролизуют при 80°С на протяжении 6 часов. Получают коричневый раствор (287.7 г, содержание твердых веществ 64%).

Экспериментальные испытания эксплуатационных характеристик

350 мл водопроводной воды вводили в мензурку, добавляли 2.5 г ингибитора глинистых сланцев (вычисленного как сухая масса - т.е. кватернизированный или некватернизированный полилизин или предшествующий продукт уровня техники) и смесь размешивали в течение 20 минут. Раствор переносили в смесительный колпачок НВ. Добавляли 30 г Cebogel® NT (Бентонит, Cebo Holland В.V., The Netherlands) как образцовое вещество для глинистого сланца и смесь перемешивали при низкой скорости в течение 10 минут. Далее, определяли реологию по вискозиметру Фэнна и прочность геля бурового раствора.

Ингибиторы глинистых сланцев (Примеры 1-3 и Примеры 1а-3а) согласно изобретению и Сравнительные ингибиторы глинистых сланцев (Сравнительный 1-3) перечислены в Таблице 1 ниже.

Таблица 1
Образец Mn Mw АЧ Твердые в-ва [%] Образец Твердые в-ва [%]
Пример 1 1400 4300 278 100 Пример 1а 67
Пример 2 1150 2840 310 100 Пример 2а 70
Пример 3 660 948 379 100 Пример За 64
Сравн. 1 Basodrill® 3200 (ингибитор глинистых сланцев от BASF SE)
Сравн. 2 Ultrahib® (ингибитор глинистых сланцев от М-I SWACO)
Сравн. 3 Холинхлорид (BASF SE)

Результаты воспроизведены в Таблице 2 ниже и в графической форме на Фиг.1.

Таблица 2
7.14 г/л Ингибитор глинистых сланцев и 85.7 г/л Бентонит
Образец Величин по вискозиметру Фэнна 35 [Па] Прочность геля бурового раствора [Па] PV [мПа*с] YP [Па] pH
600 300 200 100 6 3
10′′ 10′
Пример 1 32 28 27 26 18 16 12 11 7 25 9.0
Пример 1а 19 15 14 12 10 10 9 18 7 12 9.0
Пример 2 19 15 14 12 12 11 10 17 8 11 9.0

Пример 2а 9 6 5 4 3 4 4 8 6 3 9.1
Пример 3 14 11 10 9 8 8 9 15 6 8 9.0
Пример 3а 6 4 3 2 2 2 2 4 4 2 9.1
Срав. 1 13 12 12 13 12 11 9 9 4 10 9.1
Срав. 2 13 14 14 14 12 9 6 5 -2 15 9.1
Срав. 3 8 6 6 5 4 4 3 3 3 5 9.1
Холостой 15 11 10 8 6 6 10 19 8 7 9.2

Реология при различных значениях рН

Экспериментальные испытания эксплуатационных характеристик на образцах согласно Примеру 2а и Сравнительному образцу 2 повторяли при различных значениях рН. Результаты воспроизведены в Таблице 3. Найдено, что величина рН затрагивает изобретательный образец (Пример 2а) намного меньше, чем Сравн. образец 2 (Ultrahib®).

Таблица 3
Образец Величин по вискозиметру Фэнна 35 [Па] Прочность геля бурового раствора [Па] PV YP pH
600 300 200 100 6 3
10′′ 10′ [мПа*с] [Па]
Пример 2a 9 6 5 4 3 4 4 8 6 3 9.0
10 7 6 5 5 5 5 8 6 4 7.0
12 9 8 7 6 7 7 12 6 6 5.0
12 10 9 7 7 7 7 8 6 7 3.0
12 8 7 6 7 7 6 13 7 5 0.0
Сравн. 2 13 14 14 14 12 9 6 5 -2 15 9.0
19 17 18 19 12 12 8 8 5 14 7.0
13 10 10 9 10 9 6 7 6 7 5.0
12 11 12 13 11 10 5 6 3 9 3.0
22 22 22 23 11 10 9 7 1 21 0.0

Способность к биоразложению

Согласно способу, описанному в "OECD Guidelines for Testing of Chemicals -1992 OECD 306: Biodegradability in Seawater, Closed Bottle Method", способность к биоразложению кватернизированного полилизина согласно Примеру 3а, Сравн. образцу 2 (Ultrahib®) и веществу, выбранному для сравнения - эталона (бензоат натрия), оценивали после 28 дней и 60 дней.

Таблица 4
Материал 28 дней 60 дней
Пример 3а 38% 52%
Сравн. 2 <10% -
Этанол 80% 70%

Результаты указывают на намного лучшую способность к биоразложению кватернизированного полилизина согласно Примеру 3а, чем Ultrahib®, коммерческий ингибитор глинистых сланцев. Кроме того, 28-дневная способность к биоразложению кватернизированного полилизина согласно Примеру 3а отвечает законодательным и нормативным требованиям.


ПРИМЕНЕНИЕ ГИПЕРРАЗВЕТВЛЕННОГО ПОЛИЛИЗИНА В КАЧЕСТВЕ ИНГИБИТОРА ГЛИНИСТЫХ СЛАНЦЕВ
Источник поступления информации: Роспатент

Showing 291-300 of 657 items.
25.08.2017
№217.015.aeb2

Составы, их применение в качестве или для приготовления средств для мытья посуды и получение составов

Изобретение относится к составу, свободному от фосфатов и полифосфатов, предназначенному для машинного мытья посуды, кухонных принадлежностей и предметов по меньшей мере с одной стеклянной поверхностью, которая может быть декорированной или недекорированной, а также к способу получения такого...
Тип: Изобретение
Номер охранного документа: 0002612960
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b4a6

Стабильное при хранении жидкое моющее или чистящее средство, содержащее протеазу и целлюлазу

Изобретение относится к области биохимии. Представлено применение модифицированной протеазы в качестве средства для повышения стабильности при хранении целлюлазы в жидком моющем или чистящем средстве, включающем целлюлазу и протеазу. Изобретение обеспечивает пониженную дезактивацию целлюлазы...
Тип: Изобретение
Номер охранного документа: 0002614130
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.bae9

Способ получения полиуретанов

Настоящее изобретение относится к способу получения полиуретанов путем взаимодействия полиизоцианатов а) с соединениями, содержащими по меньшей мере два атома водорода, реакционноспособных по отношению к изоцианатным группам, b), в котором в качестве полиизоцианата а) используют по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002444536
Дата охранного документа: 10.03.2012
25.08.2017
№217.015.bafa

Содержащие частицы простые полиэфирполиолы

Изобретение относится к содержащим частицы полимера простым полиэфирполиолам, их получению и применению для получения полиуретанов. Предложены содержащие частицы полимера простые полиэфирполиолы, получаемые полимеризацией in-situ олефинненасыщенных мономеров, выбранных из стирола и/или...
Тип: Изобретение
Номер охранного документа: 0002615772
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c714

Способ диспергирования и агрегирования минеральных шламов

Группа изобретений может быть использована в горнодобывающей промышленности для облегчения агрегирования минеральных компонентов в водных минеральных шламах. Обработка водного минерального шлама включает добавление в диспергированный шлам водного раствора анионного полимера, вступающего в...
Тип: Изобретение
Номер охранного документа: 0002618821
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c831

Стабильное при хранении жидкое средство для мытья посуды, содержащее протеазу и амилазу

Предложено жидкое средство для мытья посуды, которое содержит протеазу и амилазу и обладает повышенной стабильностью при хранении. Повышения стабильности при хранении достигают благодаря использованию протеазы, содержащей аминокислотную последовательность, которая по меньшей мере на 70% ее...
Тип: Изобретение
Номер охранного документа: 0002619106
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.c8af

Получение кислых пропионатов

Изобретение относится к твердой композиции, обладающей противогрибковым действием, и содержащей, по меньшей мере, одно содержащее пропионовую кислоту соединение, выбранное из группы, включающей соединения формулы (I): , в которой M означает натрий, причем n означает 1, и x означает число от 1,8...
Тип: Изобретение
Номер охранного документа: 0002454396
Дата охранного документа: 27.06.2012
25.08.2017
№217.015.c9b0

Способ получения и очистки солей акриламидо-2-метилпропансульфоновой кислоты

Изобретение относится к способу получения солей акриламидо-2-метилпропансульфоновой кислоты (А), включающему стадии: получения раствора содержащей примеси соли акриламидо-2-метилпропансульфоновой кислоты (А) в безводном органическом растворителе (L) с использованием по меньшей мере одного...
Тип: Изобретение
Номер охранного документа: 0002619462
Дата охранного документа: 16.05.2017
25.08.2017
№217.015.cd36

Чешуйки перлита с покрытием

Изобретение может быть использовано в производстве красок, пластиков, косметических средств, керамики, стекла, в текстильной промышленности. Для получения чешуек перлита с покрытием сначала наносят слой оксида олова на чешуйки перлита. Затем наносят слой диоксида титана на чешуйки перлита с...
Тип: Изобретение
Номер охранного документа: 0002619686
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.cd5e

Способ получения цеолитного материала

Настоящее изобретение относится к способу получения цеолитов. Способ получения включает (i) обеспечение содержащего бор цеолитного материала (В-Цеолита), представляющего собой материал структуры типа MWW (B-MWW), ВЕА (В-ВЕА) или СНА (В-СНА), (ii) деборирование В-Цеолита системой жидкого...
Тип: Изобретение
Номер охранного документа: 0002619685
Дата охранного документа: 17.05.2017
Showing 291-300 of 384 items.
25.08.2017
№217.015.a073

Пригодные к динамическому вакуумированию устройства, включающие органические аэрогели или ксерогели

Изобретение относится к работающему на электричестве и пригодному к динамическому вакуумированию устройству. Устройство включает пригодную к вакуумированию по всему объему область и полезную область с терморегулированием, теплоизолируемую от окружающей температуры посредством пригодной к...
Тип: Изобретение
Номер охранного документа: 0002606526
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a219

Пылеподавляющий агрегат

Изобретения относятся к пылеподавляющему агрегату. Пылеподавляющий агрегат содержит ядро-частицу, содержащее удобрение и пылеподавляющий агент, расположенный вокруг указанного ядра-частицы и содержащий поликарбодиимид, содержащий продукт реакции изоцианатов в присутствии катализатора. Способ...
Тип: Изобретение
Номер охранного документа: 0002606919
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a25d

Способ ингибирования нежелательной радикальной полимеризации имеющейся в жидкой фазе р акриловой кислоты

Настоящее изобретение относится к способу ингибирования нежелательной радикальной полимеризации находящейся в жидкой фазе Р акриловой кислоты, во время ее хранения или технологической эксплуатации, содержание акриловой кислоты которой составляет по меньшей мере 10 вес. %, и которая, в пересчете...
Тип: Изобретение
Номер охранного документа: 0002606953
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a329

Водная полирующая композиция и способ химико-механического полирования подложек для электрических, механических и оптических устройств

Изобретение относится к водной полирующей композиции, имеющей pH от 3 до 11. Композиция содержит (А) по меньшей мере один тип абразивных частиц, которые положительно заряжены при диспергировании в водной среде, свободной от компонента (В) и имеющей pH в интервале от 3 до 9, что подтверждается...
Тип: Изобретение
Номер охранного документа: 0002607214
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a367

Составы, их применение в качестве или для приготовления средств для мытья посуды и получение составов

Изобретение относится к составам для машинного мытья посуды и кухонных принадлежностей и предметов по меньшей мере с одной стеклянной поверхностью. Описан состав, содержащий (A) в совокупности от 1 до 50 мас.% по меньшей мере одного соединения, выбранного из группы, включающей...
Тип: Изобретение
Номер охранного документа: 0002607085
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a412

Способ получения полимеров

Изобретение относится к способу получения полимеров. Описан способ получения полимерного продукта. Водную смесь, содержащую моноэтиленненасыщенный мономер или смесь моноэтиленненасыщенных мономеров подают в первое реакторное устройство. Первое реакторное устройство содержит поршневой насос...
Тип: Изобретение
Номер охранного документа: 0002607521
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a759

Модифицированные аминокарбоксилаты с повышенной стабильностью при хранении и улучшенными технологическими свойствами

Изобретение относится к аминокарбоксилатам в твердой форме, которые обладают повышенной стабильностью при хранении и улучшенными технологическими свойствами. Смесь в виде порошка, гранул или пеллет содержит: один или несколько аминокарбоксилатов, добавку, выбранную из пирогенных кремниевых...
Тип: Изобретение
Номер охранного документа: 0002608221
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a7c8

Способ получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками

Изобретение относится к способу получения вязкоупругих полиуретановых пластифицированных пенопластов с открытыми ячейками на базе воспроизводимого сырья, используемых во многих областях техники, в частности в салонах автомобилей, в предметах мебели и матрацах или для шумоизоляции. Способ...
Тип: Изобретение
Номер охранного документа: 0002435795
Дата охранного документа: 10.12.2011
25.08.2017
№217.015.a7d0

Вспениваемые гидрофторолефинами/водой системы для жестких пеноматериалов

Изобретение касается способа получения жестких пенополиуретанов, а также применения смеси вспенивающих агентов для получения жестких пенополиуретанов. Способ включает взаимодействие a) по меньшей мере одного органического полиизоцианата с b) по меньшей мере одним полиоловым компонентом в...
Тип: Изобретение
Номер охранного документа: 0002611493
Дата охранного документа: 27.02.2017
25.08.2017
№217.015.addf

Способ, не использующий органический шаблон, для получения цеолитного материала, обладающего структурой типа сна

Изобретение относится к синтезу цеолитов. Предложен способ синтеза цеолита, обладающего каркасной структурой типа СНА, содержащей YO, XO и необязательно содержащей ZO. Способ включает стадии: (1) получение смеси, содержащей один или большее количество источников YO, один или большее количество...
Тип: Изобретение
Номер охранного документа: 0002612697
Дата охранного документа: 13.03.2017
+ добавить свой РИД