×
13.01.2017
217.015.8237

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя заключается в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью термолюминесцентных дозиметров, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, при этом дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с термолюминесцентными дозиметрами, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи термолюминесцентных дозиметров, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь импульсного сильноточного релятивистского пучка электронов на стенках тракта в течение длительности импульса тока в процессе прохождения пучка по ускорительному тракту. Технический результат - повышение информативности способа диагностики сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя. 5 ил.

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях.

Известно, что при проводке (ускорении и/или транспортировке) в вакуумном тракте линейного индукционного ускорителя ИСРПЭ цилиндрического или трубчатого поперечного сечения в ИСРПЭ развиваются поперечные высокочастотные неустойчивости. Они возникают из-за нарушения равновесного состояния ИСРПЭ, например, вследствие периодического воздействия электрических и магнитных полей, формирующихся в повторяющейся протяженной структуре ускорительного тракта, либо - их асимметрии относительно продольной оси тракта при наличии начального радиального смещения ИСРПЭ или в результате взаимной несоосности ускорительных дрейфовых трубок и др. При этом возникают поперечные направлению проводки пучка колебания электронов, приводящие к радиальному расширению ИСРПЭ с дальнейшей потерей части его электронов на стенках тракта. В свою очередь рассеянные на стенки тракта электроны обусловливают вторичную эмиссию электронов, которые могут шунтировать ускорительные зазоры и вызывать поверхностные пробои ускорительных трубок, что в итоге приводит к снижению темпа ускорения ИСРПЭ.

Из области техники известен способ диагностики ИСРПЭ в вакуумном тракте линейного индукционного ускорителя RADLAC-II (статья «MECHANICAL AND MAGNETIC ALIGNMENT TECHNIQUES FOR THE RADLAC-II LINEAR ACCELERATOR», D.J. Armistead, D.L. Bolton, and M.G. Mazarakis, РАС1987), включающий регистрацию амплитуды и формы импульсов тока ИСРПЭ в процессе его проводки с помощью индукционных датчиков тока (поясов Роговского), расположенных по длине и внутри ускорительного тракта. Анализируя от датчика к датчику амплитудно-временные изменения импульсов тока ИСРПЭ, определяют уровни электронных потерь пучка и области попадания потерянных электронов на стенки тракта. По полученным данным определяют возможные причины нарушения равновесного состояния ИСРПЭ.

Недостатком предложенного способа является ограниченная информативность из-за низкого пространственного разрешения, связанного с малым количеством датчиков тока. Увеличение количества датчиков тока внутри тракта усложняет его конструкцию и затрудняет его техническое обслуживание.

Наиболее близким аналогом заявляемого способа диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя является способ, описанный в статье («Transport dynamics of a 19 MeV, 700 kA electron beam in a 10.8 m gas cell», T.W.L. Sanford, et. al, Journal of Applied Physics 70, 1778 (1991); doi: 10.1063/1.349493), включающий регистрацию амплитуды и формы импульсов тока пучка с помощью индукционных датчиков тока, а также дополнительную регистрацию интегральных значений дозы тормозного излучения от рассеянных на стенках тракта электронов из ИСРПЭ, с помощью набора точечных термолюминесцентных дозиметров (ТЛД). ТЛД используются в большем количестве, чем датчики тока и распределены вдоль вакуумного тракта с внешней его стороны. Последующий сопоставительный анализ полученной информации с датчиков тока и дозиметров дает более точную пространственную локализацию области потерь электронов на стенках тракта и их уровень с каждого датчика. Кроме того, ТЛД чувствительны к потерям электронов с высокой энергией и информируют об электронных потерях ИСРПЭ, которые плохо идентифицируются на фоне паразитных вторичных электронных потоков, шунтирующих высоковольтную структуру ускорительного тракта.

Недостатком данного устройства является его ограниченная информативность из-за невозможности определить изменение уровней потерь электронов в течение длительности импульса тока. Кроме того, для получения дозиметрических данных с помощью ТЛД требуется дополнительное время, связанное с их установкой в зонах с повышенным тормозным излучением, опасным для здоровья человека.

Задачей предлагаемого изобретения является повышение информативности способа диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя за счет дополнительного использования рядом с ТЛД сцинтилляционных датчиков, а также - снижение трудозатрат и сокращение времени, необходимого для диагностики пучка благодаря использованию сцинтилляционных датчиков вместо ТЛД после согласования их показаний (калибровки).

Техническим результатом предлагаемого изобретения является возможность проведения как пространственного, так и временного, в течение длительности импульса тока пучка, контроля изменения уровней электронных потерь ИСРПЭ на стенках ускорительного тракта.

Технический результат достигается тем, что в способе диагностики ИСРПЭ в тракте линейного индукционного ускорителя, заключающемся в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью ТЛД, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, новым является то, что дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с ТЛД, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи ТЛД, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока, и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь ИСРПЭ на стенках тракта в течение длительности импульса тока в процессе прохождения ИСРПЭ по ускорительному тракту.

Дополнение измерительных средств набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением позволяет найти моменты временных изменений импульсов ТИ, связанные с электронными потерями ИСРПЭ на стенках тракта и с нарушениями равновесного состояния ИСРПЭ вдоль по тракту. Применение сцинтилляционных датчиков необходимо для фиксации моментов возникновения (завершения) генерации тормозного излучения (ТИ), что важно для конкретизации причин нарушения проводки ИСРПЭ.

Расположение сцинтилляционных датчиков рядом с ТЛД необходимо для калибровки датчиков по интегральной дозе. В период между калибровками использование ТЛД в экспериментах не требуется, что значительно сокращает время измерений. Кроме того, выходные световые сигналы со сцинтилляционных датчиков передаются на расстояния 10÷50 м по оптическим кабелям без значительного ослабления, а также электромагнитных помех, как правило, сопровождающих передачу сигналов по радиочастотным кабелям с детекторов мощности ТИ и присущих конструкциям мощных линейных ускорителей электронов.

Результаты измерений импульсов со сцинтилляционных детекторов сопоставляются с результатами измерений импульсов с токовых датчиков по амплитуде и форме для получения информации об изменении уровней электронных потерь ИСРПЭ на стенках тракта в процессе его прохождения по ускорителю.

Данный способ диагностики ИСРПЭ электронов в тракте мощного линейного ускорителя реализуется на линейном индукционном ускорителе ЛИУ-30, схематически показанном на фиг. 1, где:

1 - инжектор пучка электронов;

2 - пучок электронов;

3 - ускоряющая система;

4 - выводное устройство пучка;

5 - мишенный узел;

6 - датчики тока;

7 - ТЛД;

8 - сцинтилляционные датчики (сцинтилляторы);

9 - регистраторы импульсов с датчиков тока;

10 - регистраторы импульсов со сцинтилляционных датчиков.

На фиг. 2 и фиг. 4 приведены осциллограммы импульсов с датчиков тока в двух разных экспериментах на ЛИУ-30, на фиг. 3 и фиг. 5 приведены соответствующие им осциллограммы импульсов сцинтилляционных детекторов и дозовые значения ТЛД.

ИСРПЭ 2 формируется в инжекторе 1 ЛИУ-30, ускоряется при прохождении ускоряющей системы 3. Далее, перемещаясь по выводному устройству 4, пучок попадает на мишенный узел 5. Из-за поперечных неустойчивостей пучка возникают его поперечные колебания, которые нарушают динамику распространения пучка, изменяют форму импульса тока пучка, приводят к его радиальному расширению с потерей части электронов пучка 2 на стенках тракта.

Датчики тока 6 пучка (секционные индукционные датчики тока), в количестве 10 штук, устанавливаются внутри и вдоль тракта с шагом 2 м. Сцинтилляторы 8 и ТЛД 7 (32 шт.) располагаются с внешней стороны тракта с шагом 0,66 м на том же азимутальном угле, что и датчики тока.

В сцинтилляционных детекторах используются сцинтилляционные датчики с наносекундным быстродействием на основе полистирола с размерами 20×10×5 мм и пластмассовые оптические кабели, передающие свет сцинтиллятора на оптоэлектронные преобразователи, которые подключаются к входам осциллографов 10. ТЛД типа ИС-7, используемые по методике ИКС (индивидуальный контроль с помощью стекол), служат для калибровки сцинтилляционных детекторов по дозе. Они имеют размеры 10×10×1 мм, которые в 10 раз меньше габаритов сцинтилляторов и располагаются в контактной близости с ними.

Формы импульсов с датчиков тока и формы импульсов с выхода сцинтилляционных детекторов регистрируются быстродействующими цифровыми осциллографами TDS3054 (9 и 10).

По фиг. 2 и 4 видно, что токи, соответствующие передней части пучка в двух экспериментах - приближенно одинаковы, однако высокочастотные колебания на задней части импульса тока пучка во втором эксперименте значительно интенсивнее. По степени искажения формы импульса тока можно сказать, что во втором случае ИСРПЭ существенно изменил свое равновесное состояние. По фиг. 3 и 5 видно, что значения доз ТЛД и соответственно потери пучка во втором случае значительно больше. Соответственно сцинтилляционный импульс во втором эксперименте (фиг. 5) существенно отличается по форме и превосходит предыдущий по интегральному значению в ~1.5 раза. Доза ТЛД во втором эксперименте больше примерно во столько же раз. Известно, что интегральное значение сцинтилляционного импульса пропорционально дозе, поэтому сцинтилляционные детекторы можно калибровать по дозе с помощью ТЛД и в дальнейшем сцинтилляционные детекторы могут заменять ТЛД. Характерный «горб» на осциллограмме сцинтилляционного импульса, соответствующий задней части пучка (фиг. 5), коррелирует с появлением высокочастотных радиальных колебаний ИСРПЭ, при которых происходит рассеяние электронов на стенки тракта вблизи расположения сцинтилляционных детекторов.

Таким образом, по амплитуде и форме импульса сцинтилляционного детектора можно судить об изменении уровня потерь ИСРПЭ на стенках в процессе его прохождения по тракту (по наличию характерного «горба»). О величине тока пучка можно судить по форме импульсов с датчиков тока. Анализ осциллограмм со сцинтилляционных детекторов, расположенных в разных точках тракта, позволяет определить наличие отклонения пучка от траектории в данном сечении тракта и степень этого отклонения. Введение сцинтилляционных детекторов позволяет заменить усложняющие конструкцию тракта и затрудняющие его техническое обслуживание датчики тока во многих сечениях тракта. Применение способа диагностики проводки пучка позволяет контролировать изменение уровней электронных потерь ИСРПЭ, на основе которых можно судить о возможных причинах нарушения равновесного состояния пучка (например, отклонения от нормальной работы ускоряющей системы). Особенности форм осциллограмм фиг. 4 и фиг. 5 могут быть связаны с нарушением темпа ускорения электронного пучка по причине отклонения в работе системы синхронизации ускорительных блоков.

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя, заключающийся в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью термолюминесцентных дозиметров, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, отличающийся тем, что дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с термолюминесцентными дозиметрами, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи термолюминесцентных дозиметров, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь импульсного сильноточного релятивистского пучка электронов на стенках тракта в течение длительности импульса тока в процессе прохождения пучка по ускорительному тракту.
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
Источник поступления информации: Роспатент

Showing 61-70 of 798 items.
20.12.2015
№216.013.9c06

Способ управления движением аэробаллистического летательного аппарата по заданной пространственной траектории

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002571567
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f5e

Способ сварки деталей различного диаметра и разной толщины

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце...
Тип: Изобретение
Номер охранного документа: 0002572435
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3f1

Ударный пневмоцилиндр

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с...
Тип: Изобретение
Номер охранного документа: 0002574630
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c9aa

Канал технологический совмещенный для промышленной ядерной установки

Изобретение относится к атомной энергетике и касается конструкции канала технологического совмещенного (КТС), содержащего тепловыделяющие и поглощающие элементы. Канал ядерного реактора содержит трубу, тепловыделяющие элементы и блоки-поглотители нейтронов. Канал снабжен второй трубой,...
Тип: Изобретение
Номер охранного документа: 0002577783
Дата охранного документа: 20.03.2016
10.03.2016
№216.014.cc25

Способ определения угловой скорости вращения объекта, стабилизированного вращением

Изобретение относится к измерительной технике, а именно к способу определения угловой скорости вращения объекта, стабилизированного вращением. Способ определения угловой скорости вращения объекта, стабилизированного вращением (ОСВ, заключается в том, что наблюдают изменение во времени...
Тип: Изобретение
Номер охранного документа: 0002577175
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc5c

Многоканальный рельсовый разрядник

Изобретение относится к высоковольтной сильноточной импульсной технике, а именно к сильноточным коммутирующим газонаполненным рельсовым разрядникам. Многоканальный рельсовый разрядник содержит герметичный диэлектрический корпус (1), выполненный в виде единой в поперечном сечении конструкции, с...
Тип: Изобретение
Номер охранного документа: 0002577532
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce9f

Устройство крепления концентричных кольцевых тепловыделяющих элементов в тепловыделяющей сборке

Изобретение относится к области атомной энергетики, в частности к тепловыделяющей сборке (ТВС) с концентричными кольцевыми тепловыделяющими элементами (твэлами). В известном устройстве крепления концентричных кольцевых твэлов в ТВС, содержащем кольцевые твэлы и дистанционирующий элемент между...
Тип: Изобретение
Номер охранного документа: 0002575866
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e8a8

Оптическая усилительная головка с контротражателем диодной накачки

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы...
Тип: Изобретение
Номер охранного документа: 0002575673
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2b80

Квантрон твердотельного лазера с термостабилизацией диодной накачки

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002579188
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d2

Способ регистрации локальных колебаний давления при пассивной локации движущихся в воде целей с компенсацией помех от поверхностного волнения

Изобретение относится к пассивному обнаружению движущихся в воде целей в условиях прибрежных морских областей и озер для осуществления охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, таких как проложенные под водой кабели, коллекторы, трубопроводы,...
Тип: Изобретение
Номер охранного документа: 0002580877
Дата охранного документа: 10.04.2016
Showing 61-70 of 288 items.
20.12.2015
№216.013.9c06

Способ управления движением аэробаллистического летательного аппарата по заданной пространственной траектории

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002571567
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f5e

Способ сварки деталей различного диаметра и разной толщины

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце...
Тип: Изобретение
Номер охранного документа: 0002572435
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3f1

Ударный пневмоцилиндр

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с...
Тип: Изобретение
Номер охранного документа: 0002574630
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c9aa

Канал технологический совмещенный для промышленной ядерной установки

Изобретение относится к атомной энергетике и касается конструкции канала технологического совмещенного (КТС), содержащего тепловыделяющие и поглощающие элементы. Канал ядерного реактора содержит трубу, тепловыделяющие элементы и блоки-поглотители нейтронов. Канал снабжен второй трубой,...
Тип: Изобретение
Номер охранного документа: 0002577783
Дата охранного документа: 20.03.2016
10.03.2016
№216.014.cc25

Способ определения угловой скорости вращения объекта, стабилизированного вращением

Изобретение относится к измерительной технике, а именно к способу определения угловой скорости вращения объекта, стабилизированного вращением. Способ определения угловой скорости вращения объекта, стабилизированного вращением (ОСВ, заключается в том, что наблюдают изменение во времени...
Тип: Изобретение
Номер охранного документа: 0002577175
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc5c

Многоканальный рельсовый разрядник

Изобретение относится к высоковольтной сильноточной импульсной технике, а именно к сильноточным коммутирующим газонаполненным рельсовым разрядникам. Многоканальный рельсовый разрядник содержит герметичный диэлектрический корпус (1), выполненный в виде единой в поперечном сечении конструкции, с...
Тип: Изобретение
Номер охранного документа: 0002577532
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce9f

Устройство крепления концентричных кольцевых тепловыделяющих элементов в тепловыделяющей сборке

Изобретение относится к области атомной энергетики, в частности к тепловыделяющей сборке (ТВС) с концентричными кольцевыми тепловыделяющими элементами (твэлами). В известном устройстве крепления концентричных кольцевых твэлов в ТВС, содержащем кольцевые твэлы и дистанционирующий элемент между...
Тип: Изобретение
Номер охранного документа: 0002575866
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e8a8

Оптическая усилительная головка с контротражателем диодной накачки

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы...
Тип: Изобретение
Номер охранного документа: 0002575673
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2b80

Квантрон твердотельного лазера с термостабилизацией диодной накачки

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002579188
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d2

Способ регистрации локальных колебаний давления при пассивной локации движущихся в воде целей с компенсацией помех от поверхностного волнения

Изобретение относится к пассивному обнаружению движущихся в воде целей в условиях прибрежных морских областей и озер для осуществления охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, таких как проложенные под водой кабели, коллекторы, трубопроводы,...
Тип: Изобретение
Номер охранного документа: 0002580877
Дата охранного документа: 10.04.2016
+ добавить свой РИД