×
13.01.2017
217.015.8234

Результат интеллектуальной деятельности: СПОСОБ ФРАКТАЛЬНОГО КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую поверхность. Исследуемую поверхность очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности, сразу после очистки на поверхность наносят жидкость в виде капли фиксированного объема. Посредством скоростной цифровой видеокамеры регистрируют момент окончания растекания капли жидкости, после чего определяют периметр и площадь растекшейся капли и убирают скоростную цифровую видеокамеру, затем над каплей устанавливают импульсный источник света и производят кратковременный световой импульс. Убирают импульсный источник света и видеокамерой регистрируют момент окончания растекания капли жидкости, нагретой световым импульсом, после чего определяют периметр и площадь растекшейся капли, нагретой световым импульсом. По полученным данным определяют фрактальную размерность исследуемой шероховатой поверхности. Изобретение обеспечивает повышение точности контроля уровня шероховатости поверхности и расширение диапазона исследуемых материалов. 1 ил.

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую поверхность, например поверхность пера лопатки ГТД на заключительных стадиях обработки.

Известен способ капиллярной дефектоскопии, включающий в различных вариантах следующие основные операции: пропитку деталей в индикаторном (ярко окрашенном или люминесцирующем) растворе с целью заполнения полостей дефектов и пространства между неровностями, удаления раствора с поверхности детали, проявления дефектов и выявления следов дефектов. Проявление дефектов осуществляется обычно порошками, наносимыми на поверхность детали и впитывающими индикаторный раствор из полостей дефектов [Назаров С.Т. Методы контроля качества сварных соединений. М.: Машиностроение. - 360 с; Гурвич А.К. Неразрушающий контроль. Книга 1. Общие вопросы. Контроль проникающими веществами. / А.К. Гурвич, И.Н. Ермолов, С.Г. Сажин. Под ред. В.В. Сухорукова. М.: Высшая школа, 1992. - 242 с.].

Недостатком данного способа является ограничение точности контроля шероховатости поверхности, обусловленное вязкостью используемого индикаторного раствора.

Наиболее близким по технической сущности к предлагаемому изобретению является способ контроля шероховатости поверхности диэлектрических подложек по патенту RU №2331870 С2 от 17.07.2006, опубл. 20.08.2008, МПК G01N 21/88, заключающийся в том, что исследуемую поверхность подложки очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала подложки. Сразу после очистки подложку располагают горизонтально и на ее поверхность с высоты не менее 6 мм и не более 22 мм наносят каплю жидкости фиксированного объема. Определяют время растекания капли жидкости по поверхности подложки от момента касания капли жидкости поверхности подложки до прекращения движения жидкости по поверхности. Шероховатость контролируемой поверхности подложки определяют путем сопоставления полученного значения времени растекания капли жидкости по поверхности подложки с предварительно замеренной калибровочной зависимостью.

Недостатком данного способа является ограничение точности контроля шероховатости поверхности, обусловленное вязкостью жидкости, используемой для формирования капли.

Поставлена задача: повысить точность контроля уровня шероховатости поверхности, расширив при этом диапазон исследуемых материалов.

Решение поставленной задачи достигается тем, что исследуемую поверхность очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности, сразу после очистки на поверхность наносят жидкость в виде капли фиксированного объема, посредством скоростной цифровой видеосъемки фиксируют время растекания капли жидкости по поверхности, затем определяют шероховатость исследуемой поверхности, согласно заявляемому изобретению посредством скоростной цифровой видеокамеры регистрируют момент окончания растекания капли жидкости, после чего определяют периметр и площадь растекшейся капли и убирают скоростную цифровую видеокамеру, затем над каплей устанавливают импульсный источник света и производят кратковременный световой импульс, в дальнейшем убирают импульсный источник света и помещают в исходное положение скоростную цифровую видеокамеру, которой регистрируют момент окончания растекания капли жидкости, нагретой световым импульсом, после чего определяют периметр и площадь растекшейся капли, нагретой световым импульсом; по полученным данным определяют фрактальную размерность D исследуемой шероховатой поверхности:

D=2·loga(Gдлина1/Gдлина2).

Здесь а=(Gплощадь1/Gплощадь2), где Gдлина1 - длина периметра растекшейся капли; Gдлина2 - длина периметра растекшейся капли после нагрева; Gплощадь1 - площадь растекшейся капли; Gплощадь2 - площадь растекшейся капли после нагрева.

Сущность изобретения поясняется чертежом, где представлена блок-схема устройства для фрактального контроля шероховатости поверхности. Устройство состоит из источника света 1, фильтра 2 инфракрасного излучения, регулируемого источника питания 3 осветителя, дозатора 4 капель рабочей жидкости, направляющей иглы 5 дозатора капель рабочей жидкости, скоростной видеокамеры 6, записывающего устройства 7, исследуемой поверхности 8, капли 9 жидкости фиксированного объема, импульсного источника 10 света, дифракционного оптического элемента 11.

Способ осуществляется следующим образом.

Исследуемую поверхность 8 очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности 8, сразу после очистки на исследуемую поверхность 8 наносят жидкость в виде капли 9 жидкости фиксированного объема, затем посредством скоростной цифровой видеокамеры 6 регистрируют время растекания капли 9 жидкости фиксированного объема по поверхности и определяют шероховатость исследуемой поверхности 8. Для этого предварительно посредством скоростной цифровой видеокамеры 6 регистрируют момент окончания растекания капли 9 жидкости фиксированного объема, после чего определяют периметр и площадь растекшейся капли 9 фиксированного объема и убирают скоростную цифровую видеокамеру 6, затем над каплей 9 жидкости фиксированного объема устанавливают импульсный источник 10 света и производят кратковременный световой импульс, в дальнейшем убирают импульсный источник 10 света и помещают в исходное положение скоростную цифровую видеокамеру 6, посредством которой регистрируют момент окончания растекания капли 9 жидкости фиксированного объема, нагретой световым импульсом. Далее определяют периметр и площадь растекшейся капли 9 жидкости фиксированного объема, нагретой световым импульсом. По полученным данным определяют фрактальную размерность D исследуемой поверхности 8:

D=2·loga(Gдлина1/Gдлина2),

где а=(Gплощадь1/Gплощадь2), где Gдлина1 - длина периметра растекшейся капли 9 жидкости фиксированного объема; Gдлина2 - длина периметра растекшейся капли 9 жидкости фиксированного объема после нагрева; Gплощадь1 - площадь растекшейся капли 9 жидкости фиксированного объема; Gплощадь2 - площадь растекшейся капли 9 жидкости фиксированного объема после нагрева.

В результате сформированного импульсным источником 10 света кратковременного освещения растекшейся капли 9 жидкости фиксированного объема и прилегающих к ней фрагментов исследуемой поверхности 8 происходит нагрев вещества капли 9 жидкости фиксированного объема. Повышение температуры вещества капли 9 жидкости фиксированного объема приводит к изменению вязкости жидкости. Например, при использовании воды в качестве вещества капли 9 жидкости фиксированного объема вязкость при нагреве уменьшается [http://ru.wikipedia.org/wiki/Вязкость], в результате чего капля 9 жидкости фиксированного объема начинает вновь растекаться по исследуемой поверхности 8.

Материал исследуемой поверхности 8 обладает значительно большей массой, чем масса капли 9 жидкости фиксированного объема, поэтому теплоемкость исследуемой поверхности 8 намного больше теплоемкости капли 9 жидкости фиксированного объема. По этой причине световой импульс, сформированный импульсным источником 10 света, практически не приводит к изменению температуры материала исследуемой поверхности 8.

Метод определения фрактальной размерности основан на подсчете соотношения между периметром и площадью растекшейся капли. Такое соотношение применяют для оценки размерности фрактальной кривой, ограничивающей исследуемую область. Согласно фрактальной геометрии [Мандельброт Б. Фрактальная геометрия природы. - М.: Институт компьютерных исследований, 2002. - 656 с.] такая зависимость дается законом Мандельброта:

Здесь Gдлина - длина кривой (периметра капли), измеренная с шагом G, Gплощадь - площадь, ограниченная кривой (площадь капли), измеренная с шагом G2, D - фрактальная размерность рассматриваемой разветвленной структуры, Cη - типичный во фрактальной геометрии неопределенный множитель.

По результатам двух измерений периметра растекшейся капли 9 жидкости фиксированного объема получаем систему двух уравнений:

Здесь Gдлина1 - длина периметра растекшейся капли 9 жидкости фиксированного объема; Gдлина2 - длина периметра растекшейся капли 9 жидкости фиксированного объема после нагрева; Gплощадь1 - площадь растекшейся капли 9 жидкости фиксированного объема; Сплощадь2 - площадь растекшейся капли 9 жидкости фиксированного объема после нагрева.

Из системы уравнений (2) следует, что

где основание логарифма а=(Gплощадь1/Gплощадь2).

В этом случае изменение вязкости вещества капли 9 жидкости фиксированного объема может рассматриваться как изменение шага покрытия при определении фрактальной размерности.

Геометрия растекшейся капли 9 жидкости фиксированного объема регистрируется посредством скоростной видеокамеры 6 и записывающего устройства 7. Затем определяется периметр и площадь капли 9 жидкости фиксированного объема путем использования методов цифровой обработки изображений [Сойфер В.А. Методы компьютерной обработки изображений. М.: Физматлит, 2003. - 784 с.].

Исследуемая поверхность 8 может иметь различный угол наклона относительно линии горизонта. Наибольший угол наклона исследуемой поверхности 8 определяется экспериментально и выбирается таким образом, чтобы капля 9 жидкости фиксированного объема не могла скатиться с исследуемой поверхности 8.

Дифракционный оптический элемент (ДОЭ) 11 необходим для обеспечения равномерного распределения плотности света над растекшейся каплей 9 жидкости фиксированного объема. Синтез ДОЭ с заданными свойствами может быть реализован в соответствии с [Сойфер В.А. Методы компьютерной оптики. М.: «Физматлит», 2003. - 688 с.].

Пример. В качестве исследуемой поверхности использована подложка типа СТ-50, в качестве жидкости - дистиллированная вода. Очистка исследуемой поверхности осуществлена плазмохимическим травлением в среде аргона на установке травления пластин УТП. ПДЭ-125-008. Сразу после очистки с помощью дозатора нанесена капля дистиллированной воды на горизонтально расположенную исследуемую поверхность. Момент окончания растекания капли зарегистрирован системой скоростной цифровой видеосъемки на базе камеры VS-FAST со скоростью 1000 кадров/с. Растекшаяся капля воды фиксированного объема освещена одним импульсом фотовспышки ФИЛ-100, которая позволяет формировать длительность светового импульса - 1/500 с, при этом энергия вспышки составляет 68 Дж.

Фрактальная размерность уровня шероховатости исследуемой поверхности по формуле (3) составила 1,72.

Способ фрактального контроля шероховатости поверхности, заключающийся в том, что исследуемую поверхность очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности, сразу после очистки на исследуемую поверхность наносят жидкость в виде капли фиксированного объема, посредством скоростной цифровой видеосъемки фиксируют время растекания капли жидкости по поверхности, затем определяют шероховатость исследуемой поверхности, отличающийся тем, что посредством скоростной цифровой видеокамеры регистрируют момент окончания растекания капли жидкости, после чего определяют периметр и площадь растекшейся капли и убирают скоростную цифровую видеокамеру, затем над каплей устанавливают импульсный источник света и производят кратковременный световой импульс, в дальнейшем убирают импульсный источник света и помещают в исходное положение скоростную цифровую видеокамеру, которой регистрируют момент окончания растекания капли жидкости, нагретой световым импульсом, после чего определяют периметр и площадь растекшейся капли, нагретой световым импульсом; по полученным данным определяется фрактальная размерность D исследуемой шероховатой поверхности: где a=(G/G), где G - длина периметра растекшейся капли; G - длина периметра растекшейся капли после нагрева; G - площадь растекшейся капли; G - площадь растекшейся капли после нагрева.
СПОСОБ ФРАКТАЛЬНОГО КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ
СПОСОБ ФРАКТАЛЬНОГО КОНТРОЛЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Showing 21-25 of 25 items.
25.08.2017
№217.015.d10b

Накопитель энергии

Изобретение относится к электротехнике и может быть использовано в качестве накопителя энергии для транспортных средств и источника бесперебойного питания для ветровых электростанций. Технический результат заключается в увеличении накапливаемой энергии за счет накопления не только механической,...
Тип: Изобретение
Номер охранного документа: 0002621309
Дата охранного документа: 01.06.2017
17.10.2019
№219.017.d674

Вакуумный держатель для подложек

Изобретение относится к технологической оснастке. Вакуумный держатель для подложек выполнен в виде стола, на поверхности которого выполнены сквозные отверстия, соединенные с камерой низкого давления. Поверх стола с отверстиями устанавливается пластина из полимерного материала круглой или...
Тип: Изобретение
Номер охранного документа: 0002702995
Дата охранного документа: 15.10.2019
17.10.2019
№219.017.d67a

Способ фрактального контроля шероховатости поверхности

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую поверхность, например, поверхность пера лопатки ГТД на заключительных стадиях обработки. Заявленный способ фрактального...
Тип: Изобретение
Номер охранного документа: 0002702925
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d6ac

Способ изготовления фазовых дифракционных решеток, микроструктур и контактных масок

Способ относится к оптическому приборостроению и может быть использован для создания дифракционных оптических элементов видимого и ультрафиолетового диапазона - линз Френеля, корректоров и др. Способ изготовления фазовых дифракционных решеток, микроструктур и контактных масок включает в себя...
Тип: Изобретение
Номер охранного документа: 0002702960
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d714

Расширитель параллельного пучка лазерного излучения

Изобретение относится к области лазерной оптики. Расширитель параллельного пучка лазерного излучения обеспечивает видимое увеличение с высоким качеством изображения при малой длине. Выполнен в виде конуса, изготовленного из преломляющего материала с показателем преломления n и с углом при...
Тип: Изобретение
Номер охранного документа: 0002703016
Дата охранного документа: 15.10.2019
Showing 21-30 of 30 items.
02.08.2018
№218.016.77e2

Динамический испаритель твердых растворов

Изобретение относится к области формирования тонких пленок сложного состава в вакууме и может быть использовано в микроэлектронике. Испаритель твердых растворов, используемый для формирования тонких пленок в вакууме, содержит корпус в виде стакана и заслонку в виде крышки, внутренняя часть...
Тип: Изобретение
Номер охранного документа: 0002662914
Дата охранного документа: 31.07.2018
25.08.2018
№218.016.7f79

Перестраиваемое волоконно-оптическое фокусирующее устройство

Изобретение относится к устройствам для фокусировки лазерного излучения, предназначено для интегрирования в волоконно-оптические системы, где требуется оперативная подстройка фокусирующих свойств волоконных световодов. Устройство содержит последовательно расположенные и оптически связанные...
Тип: Изобретение
Номер охранного документа: 0002664787
Дата охранного документа: 22.08.2018
21.11.2018
№218.016.9f2c

Способ бесконтактного фрактального контроля шероховатости гидрофобной поверхности

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую гидрофобную поверхность, например парафин, воск, огнеупоры и т.п. Заявленный способ бесконтактного фрактального контроля...
Тип: Изобретение
Номер охранного документа: 0002672788
Дата охранного документа: 19.11.2018
17.10.2019
№219.017.d674

Вакуумный держатель для подложек

Изобретение относится к технологической оснастке. Вакуумный держатель для подложек выполнен в виде стола, на поверхности которого выполнены сквозные отверстия, соединенные с камерой низкого давления. Поверх стола с отверстиями устанавливается пластина из полимерного материала круглой или...
Тип: Изобретение
Номер охранного документа: 0002702995
Дата охранного документа: 15.10.2019
17.10.2019
№219.017.d67a

Способ фрактального контроля шероховатости поверхности

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую поверхность, например, поверхность пера лопатки ГТД на заключительных стадиях обработки. Заявленный способ фрактального...
Тип: Изобретение
Номер охранного документа: 0002702925
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d6ac

Способ изготовления фазовых дифракционных решеток, микроструктур и контактных масок

Способ относится к оптическому приборостроению и может быть использован для создания дифракционных оптических элементов видимого и ультрафиолетового диапазона - линз Френеля, корректоров и др. Способ изготовления фазовых дифракционных решеток, микроструктур и контактных масок включает в себя...
Тип: Изобретение
Номер охранного документа: 0002702960
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d714

Расширитель параллельного пучка лазерного излучения

Изобретение относится к области лазерной оптики. Расширитель параллельного пучка лазерного излучения обеспечивает видимое увеличение с высоким качеством изображения при малой длине. Выполнен в виде конуса, изготовленного из преломляющего материала с показателем преломления n и с углом при...
Тип: Изобретение
Номер охранного документа: 0002703016
Дата охранного документа: 15.10.2019
27.12.2019
№219.017.f3bf

Способ фрактального контроля шероховатости поверхности

Способ может использоваться для контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций. В способе исследуемую поверхность очищают, наносят на нее жидкость в виде капли фиксированного объема, регистрируют момент окончания...
Тип: Изобретение
Номер охранного документа: 0002710483
Дата охранного документа: 26.12.2019
06.02.2020
№220.017.ff1b

Накопитель энергии

Изобретение относится к электротехнике и может быть использовано в качестве накопителя энергии для транспортных средств, ветровых и солнечных электростанций. Технический результат заключается в повышении накапливаемой энергии за счет накопления не только механической, но также и индуктивной...
Тип: Изобретение
Номер охранного документа: 0002713385
Дата охранного документа: 05.02.2020
15.07.2020
№220.018.3291

Способ изготовления имплантата позвонка анатомической формы из костного материала, совместимого с иммунной системой больного

Изобретение относится к медицине, а именно к проектированию имплантата позвонка полого и анатомической формы. По доступной информации о размерах и пропорциях позвонка строится 3D-модель разрушенного позвонка, которая сечется определенным образом на элементы конструкции имплантата позвонка....
Тип: Изобретение
Номер охранного документа: 0002726398
Дата охранного документа: 13.07.2020
+ добавить свой РИД