×
13.01.2017
217.015.7c78

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, в частности к способу получения трехмерных керамических изделий. Техническим результатом является повышение технологичности процесса изготовления и расширение номенклатуры изделий. Технический результат достигается способом получения трехмерных керамических изделий, включающим последовательное нанесение слоев затвердевающего материала через сопло в подвижной головке. В качестве материала используют термопластичную суспензию, предварительно нагретую до температуры в диапазоне 70-90 °C. В качестве термопластичной суспензии используют смесь порошков оксида алюминия с термопластичной связкой - парафин и воск. Подачу нагретой термопластичной суспензии осуществляют через коническое конфузорное сопло с полууглом раствора θ=15° под давлением. При этом реализуют быстрое охлаждение слоев затвердевающего материала, полученную заготовку отжигают при температуре 1000-1200 °C в течение не менее 1 часа, затем проводят спекание заготовки при температуре 1700-1800 °C с изотермической выдержкой в течение не менее 1 часа. 6 ил., 1 пр.

Изобретение относится к области порошковой металлургии, в частности к способам получения керамических образцов с заданной трехмерной структурой, и может быть использовано для получения отдельных деталей и изделий в целом из оксида алюминия, которые могут применяться в ракетной технике, теплоэнергетике, медицине, машиностроении и металлургии.

Известны способы получения керамических изделий путем подачи расплавленного шликера под давлением в металлические формы [1-3]. Однако данные способы могут использоваться только для получения однородных по объему структур и характеризуются трудоемкостью процесса как с точки зрения сборки и разборки форм, так и с точки зрения последующей доводки изделия, поскольку приходится обрабатывать область литника.

Известен способ получения деталей с заданной пространственной структурой методом 3D печати, включающий подачу материала в виде гибкого прутка, изготовленного из различных полимерных материалов с последующим его расплавлением в печатающей головке [4].

Известен способ создания трехмерной модели путем селективного лазерного спекания. Согласно данному способу лазерный луч послойно спекает заданный объем материала, в качестве которого используется жидкий фотополимер, в который добавлен специальный реагент-отвердитель. Состав полимеризуется и становится твердым под воздействием ультрафиолетового лазера [5].

Однако данные способы не позволяют получать изделия из керамики, отличающейся высокой температурой плавления, высокой прочностью, твердостью, износостойкостью и термостойкостью.

Наиболее близким по техническому решению к заявленному изобретению является способ, основанный на устройстве [6], которое включает подвижную головку, перемещающуюся по трем осям по заданной схеме, снабженную системой подачи материала, который затвердевает при заданной температуре. Трехмерные объекты могут быть получены путем нанесения повторных слоев. Каждый последующий слой, формируемый кончиком дозирующей головки, расположен выше предыдущего слоя на определенную и контролируемую высоту, на которую перемещается дозирующая головка. В данном случае в качестве материала для получения изделий используются различные полимерные материалы, предварительно сформированные в виде гибкого прутка.

Техническим результатом настоящего изобретения является разработка способа получения трехмерных керамических изделий, обеспечивающего повышение технологичности процесса изготовления деталей из керамики и расширение номенклатуры изделий за счет возможности получения сложных 3D структур.

Для достижения указанного технического результата предложен способ получения трехмерных керамических изделий, включающий последовательное нанесение слоев затвердевающего материала через сопло в подвижной головке. При этом что в качестве материала используют термопластичную суспензию, предварительно нагретую до температуры (70÷90)°C. В качестве термопластичной суспензии используют смесь порошков оксида алюминия с термопластичной связкой - парафин и воск, при этом реализуют быстрое охлаждение слоев затвердевающего материала, полученную заготовку отжигают при температуре (1000÷1200)°C в течение не менее 1 часа, затем проводят спекание заготовки при температуре (1700÷1800)°C с изотермической выдержкой в течение не менее 1 часа, а подачу нагретой термопластичной суспензии осуществляют через коническое конфузорное сопло с полууглом раствора θ=15° под давлением, которое определяют в соответствии с соотношением

,

где Δp(t) - давление подачи, Па;

G(t) - требуемый расход термопластичной суспензии, кг/с;

ρ - плотность суспензии, кг/м3;

Sкр - площадь минимального сечения сопла, м2;

φ - безразмерный коэффициент расхода сопла.

Полученный положительный эффект изобретения - способ получения трехмерных керамических изделий, обеспечивающий повышение технологичности процесса изготовления деталей из керамики и расширение номенклатуры изделий за счет возможности получения сложных 3D структур, обусловлен следующими факторами:

1. Предварительный нагрев термопластичной суспензии до температуры в диапазоне (70÷90)°C позволяет получать оптимальные реологические свойства материала. Выбор диапазона рабочей температуры в области (70÷90)°C обусловлен результатами анализа зависимости вязкости от температуры для разных термопластичных суспензий (фиг. 1) [7, 8]. При аппроксимации экспериментальных зависимостей на фиг. 1 можно выделить 2 участка. Первый участок соответствует интенсивному уменьшению значений вязкости при увеличении температуры, на втором участке вид зависимости приближается к асимптотической. При t<70°C невозможно обеспечить контролируемый расход суспензии, поскольку при незначительном изменении температуры (например, за счет флуктуации) вязкость суспензии резко изменяется, что приводит к изменению φ и при заданном давлении Δp реализуется большой разброс по расходу. Верхняя граница (90°C) выбрана из следующих соображений:

а) слабая зависимость µ(t), а следовательно, и φ(t), что обеспечивает стабильность заданного расхода G(t);

б) дальнейшее повышение температуры обеспечивает большую стабильность, однако с ростом t возрастают энергетические затраты на нагрев, а также возможно самовоспламенение связки, что нарушает технологический режим.

2. Использование в качестве основного материала порошков оксида алюминия позволяет получать износостойкие, термостойкие и жаропрочные детали и изделия, которые могут применяться в ракетной технике, теплоэнергетике, медицине, машиностроении и металлургии.

3. В подавляющем большинстве случаев к прочностным свойствам керамических деталей предъявляются высокие требования. Достижение высокой прочности возможно при отсутствии в деталях дефектов в виде пор. Для этого необходимо на стадии получения термопластичной суспензии обеспечить максимальный коэффициент упаковки частиц используемых порошков. Согласно [8] максимальный коэффициент упаковки в вязких суспензиях достигается в том случае, если между частицами твердой фазы будут жидкие прослойки минимальной толщины. Для этого в качестве пластификатора должны применяться легкоплавкие вещества с малой вязкостью в расплавленном состоянии, которые хорошо смачивают поверхность твердой фазы. Поскольку применяемые порошки, как правило, полярны, в качестве основного компонента связки термопластичной суспензии должны применяться неполярные вещества. Кроме того, связка должна придавать прочность полуфабрикатам, обладать малой объемной усадкой и быть нетоксичной. Этим требованиям лучше всего удовлетворяет парафин, а воск применяется для повышения текучести.

4. Быстрое охлаждение суспензии при выходе из сопла, например, с использованием системы подачи сжатого воздуха к месту инжектирования термопластичной суспензии обеспечивает ее быстрое охлаждение до температуры ниже 30°C, что приводит к кристаллизации и исключает деформацию геометрии детали в процессе печати.

5. Выбор диапазона температур, при которых необходимо проводить удаление технологической связки ((1000÷1200)°C), обусловлен тем, что при отжиге ниже 1000°C не достигается нужная прочность полуфабриката, а при термообработке при температуре более 1200°C происходит припекание засыпки, в которой проводят предварительное спекание [7, 8].

6. Выбор диапазона температур, при которых необходимо проводить высокотемпературное спекание ((1700÷1800)°C), обусловлен тем, что в таком режиме обеспечивается получение деталей с минимальной пористостью и высокими прочностными свойствами [7, 8].

7. Массовый секундный расход жидкости через сужающее устройство (сопло) определяется следующим соотношением [9]:

где G - расход жидкости, кг/с;

φ - безразмерный коэффициент расхода;

Sкр - площадь минимального сечения сопла, м2;

ρ - плотность жидкости, кг/м3;

Δp=po-pa - перепад давления на сужающем устройстве, Па;

po - давление подачи жидкости, Па;

рa - давление среды, в которую истекает жидкость, Па.

Коэффициент расхода φ, входящий в соотношение (1), зависит от конструкции сопла и режима истечения и определяется, как правило, экспериментально (путем градуировки конкретного сопла).

Термопластичная суспензия, подаваемая через сопло, является вязкой жидкостью (коэффициент динамической вязкости на 3-4 порядка выше, чем у воды). Для вязких жидкостей режим истечения определяется числом Рейнольдса [9]:

где U - скорость истечения жидкости из сопла, м/с;

Dкр - диаметр минимального сечения сопла, м;

µ - коэффициент динамической вязкости, Па·с.

Таким образом, коэффициент расхода конкретного сопла φ зависит от числа Рейнольдса и, следовательно, от входящих в него параметров ρ, U, Dкр, µ. При Dкр=const, ρ=const число Рейнольдса зависит от вязкости жидкости и скорости ее истечения через сопло. Для контролируемого расхода суспензии необходимо обеспечить постоянное значение коэффициента расхода.

В [9] показано, что постоянство коэффициента расхода в широком диапазоне чисел Рейнольдса (Re=102÷105) и, следовательно, расход обеспечивает конструкция сужающего устройства в виде конфузорного конического сопла с полууглом раствора θ=15°.

Таким образом, для подачи суспензии предлагается использовать коническое сопло с θ=15°. Требуемое давление подачи суспензии следует из соотношения (1):

в котором коэффициент расхода φ определяют экспериментально для конкретной суспензии и конкретного диапазона температур ее нагрева (от которой зависит вязкость суспензии).

Пример реализации способа.

Сущность изобретения поясняется на фиг. 2, где схематично изображено устройство для формирования керамических полуфабрикатов заданной геометрии. Устройство состоит из электронного управляющего блока с установленным программным обеспечением в виде CAD/CAM пакетов - 10, который контролирует перемещение платформы 7 по заданной схеме и работу редуктора 2 для регулировки давления в системе подачи воздуха из компрессора 1. Таким образом, редуктор 2 и задвижка 8 обеспечивают контроль давления в системе подачи термопластичной суспензии по тракту трубопровода и тем самым определяют расход материала в каждой точке. Герметичная емкость 3, предназначенная для разогрева термопластичной суспензии до заданной температуры, снабжена манометром для контроля давления, нагревательными элементами и мешалкой, которая приводится в движение электродвигателем 4, фиг. 3. Перемешивание расплавленной в емкости 3 термопластичной суспензии необходимо во избежание расслоения.

Устройство работает следующим образом. В CAD системе проектируется требуемая геометрия детали. Предварительно разогретая до рабочей температуры (T1) термопластичная суспензия за счет избыточного контролируемого давления в емкости 3 подается по подогреваемому гибкому трубопроводу 5 к печатающему блоку. Важным является контроль температуры (T2) гибкого трубопровода, фиг. 4.

Под давлением P1 и при температуре T1 термопластичная суспензия поступает к печатающему блоку, снабженному соплом, которое характеризуется температурой T3 и диаметром Sкр, фиг. 5. Таким образом, для качественной подачи материала через сопло в каждом частном случае необходимо обеспечить оптимальное сочетание параметров T1, P1, Т2, T3 и Sкр.

Построение заданной геометрии из термопластичной суспензии осуществляется послойно методом наплавления. Важным является охлаждение заданной суспензии на данном слое с использованием системы подачи сжатого воздуха к месту инжектирования.

Для формирования конечной детали полученную заготовку подвергают обжигу для удаления технологической связки с последующим высокотемпературным спеканием.

В качестве примера реализации был использован 3D принтер, модернизированный с учетом особенностей способа получения трехмерных керамических изделий по схеме, представленной на фиг. 2.

Для получения изделий в виде ниппеля габаритных размеров Ш; В; Т; - 25 мм; 68 мм; 25 мм, (фиг. 6) разработанным способом использовалась термопластичная суспензия марки ВК95-1, полученная из 88% алюмооксидного керамического порошка и 12% органической связки производства ХК ОАО "НЭВ3-Союз". После формования керамического полуфабриката проводили удаление органического связующего при температуре 1100°C в атмосфере воздуха и высокотемпературное спекание изделий при температуре 1700°C и выдержке при данной температуре в течение не менее часа. Прочность готового материала на изгиб составляла (220±20) МПа, что обеспечивалось малой остаточной пористостью в микроструктуре материала. По данному способу возможно получение керамических деталей любой геометрии с возможностью управления внутренней микроструктурой материалов путем специальной термообработки после удаления связующего.

Таким образом, предложенный способ позволяет обеспечить заявленный положительный эффект изобретения - получение прочных керамических изделий с заданной трехмерной структурой, повышение технологичности процесса изготовления деталей из керамики и расширение номенклатуры изделий за счет возможности получения сложных 3D структур.

ЛИТЕРАТУРА

1. Патент UA №2040392, МПК В28В 1/00. Устройство для литья керамических изделий под давлением / Крючков Ю.Н., Лашнева В.В., Дубок В.А.; опубл. 25.07.1995.

2. Патент РФ №2005067, МПК В28В 001/26. Устройство для формования мелких изделий сложной конфигурации из керамических материалов / Блинов В.Н., Кошмина З.Н., Гладских С.С, Матюшев И.И., Филиппов A.M.; опубл. 30.12.1993.

3. АС СССР №485995, МПК С04В 33/28. Способ получения шликера для горячего литья керамических изделий / Пузырев Э.И., Шапиро Г.М.; опубл. 30.09.1975.

4. Patent US №5503785, МПК В29С 41/02. Process of support removal for fused deposition modeling / S. Scott Crump, 02.04.1996.

5. Patent US №5155324, МПК B23K 26/00. Method for selective laser sintering with layerwise cross-scanning / Carl. R. Deckard, 13.10.1992.

6. Patent US №5340433, МПК B65K 11/04. Modeling apparatus for three-dimensions objects / S. Scott Crump, 23.80.1994.

7. Грибовский П.О. Горячее литье керамических изделий. - М: Госэнергоиздат, 1956. - 173 с.

8. Добровольский А.Г. Шликерное литье. - М.: Металлургия, 1977. - 240 с.

9. Кремлевский П.П. Расходомеры и счетчики количества: Справочник. - Л.: Машиностроение, 1989. - 701 с.

Способ получения трехмерных керамических изделий, включающий последовательное нанесение слоев затвердевающего материала через сопло в подвижной головке, отличающийся тем, что в качестве материала используют термопластичную суспензию, предварительно нагретую до температуры 70-90 °C, в качестве термопластичной суспензии используют смесь порошка оксида алюминия с термопластичной связкой - парафин и воск, при этом реализуют быстрое охлаждение слоев затвердевающего материала, полученную заготовку отжигают при температуре 1000-1200 °C в течение не менее 1 ч, затем проводят спекание заготовки при температуре 1700-1800 °C с изотермической выдержкой в течение не менее 1 ч, а подачу нагретой термопластичной суспензии осуществляют через коническое конфузорное сопло с полууглом раствора θ=15° под давлением, которое определяют в соответствии с соотношением ,где Δp(t) - давление подачи, Па;G(t) - требуемый расход термопластичной суспензии, кг/с;ρ - плотность суспензии, кг/м;S - площадь минимального сечения сопла, м;φ - безразмерный коэффициент расхода сопла.
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Showing 31-40 of 40 items.
25.08.2017
№217.015.d02c

Способ получения упрочненного нанокомпозиционного материала на основе магния

Изобретение относится к получению упрочненного нанокомпозиционного материала, который может быть использован в авиастроении и в автомобильной промышленности. Готовят лигатуру в виде компактированных стержней из равномерно перемешанной смеси порошка магния и нанопорошка нитрида алюминия с...
Тип: Изобретение
Номер охранного документа: 0002621198
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.e0ff

Устройство для смешивания жидкостей и порошков с жидкостью

Изобретение относится к металлургии, строительной, лакокрасочной и другим отраслям промышленности. Устройство для смешивания жидкостей и порошков с жидкостью в резервуаре содержит стержень с закрепленным на одном конце рабочим органом с возможностью его вращения и продольного колебательного...
Тип: Изобретение
Номер охранного документа: 0002625471
Дата охранного документа: 14.07.2017
29.12.2017
№217.015.f6f9

Этил (3s,4r,5s)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилата этоксисукцинат в качестве противовирусного препарата и способ его получения

Изобретение относится к этил (3S,4R,5S)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилат этоксисукцинату, обладающему противовирусной способностью. Соединение по изобретению получают путем обработки этил...
Тип: Изобретение
Номер охранного документа: 0002639158
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fd04

Стенд для исследования деформации капель аэродинамическими силами

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу...
Тип: Изобретение
Номер охранного документа: 0002638376
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.099d

Способ получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия

Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из...
Тип: Изобретение
Номер охранного документа: 0002631996
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.09ae

Способ получения упрочненных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем...
Тип: Изобретение
Номер охранного документа: 0002631995
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.102a

Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося...
Тип: Изобретение
Номер охранного документа: 0002633648
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1040

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе,...
Тип: Изобретение
Номер охранного документа: 0002633730
Дата охранного документа: 17.10.2017
05.07.2019
№219.017.a618

Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов

Изобретение относится к области космической техники, а более конкретно к защите космических аппаратов. Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов включает обнаружение стороннего космического объекта и защиты от него экраном. Экран выполнен...
Тип: Изобретение
Номер охранного документа: 0002693481
Дата охранного документа: 03.07.2019
06.12.2019
№219.017.ea22

Способ идентификации космических аппаратов и их обломков в космическом пространстве

Изобретение относится к ракетно-космической технике и может быть использовано для идентификации космических аппаратов и их обломков в космическом пространстве с помощью средств космического мониторинга. Способ идентификации космических аппаратов и их обломков в космическом пространстве с...
Тип: Изобретение
Номер охранного документа: 0002707982
Дата охранного документа: 03.12.2019
Showing 41-50 of 82 items.
03.10.2018
№218.016.8d91

Способ предотвращения контакта космического аппарата с активно сближающимся объектом

Изобретение относится к космической технике. В способе предотвращения контакта космического аппарата (КА) с активно сближающимся объектом с использованием приемных датчиков регистрации внешнего излучения на внутренней стороне оболочки, выполненной в виде тела вращения вокруг КА, или ее части,...
Тип: Изобретение
Номер охранного документа: 0002668378
Дата охранного документа: 28.09.2018
17.10.2018
№218.016.92db

Устройство автоматической стыковки космических аппаратов в операциях орбитального обслуживания

Изобретение относится к системам автоматической стыковки космических аппаратов (КА). Устройство автоматической стыковки КА в операциях орбитального обслуживания содержит штырь на обслуживающем КА и коническое гнездо на обслуживаемом КА. В центре конического гнезда находится подвижный стержень,...
Тип: Изобретение
Номер охранного документа: 0002669763
Дата охранного документа: 15.10.2018
21.10.2018
№218.016.94ab

Устройство для создания компактного кластера монодисперсных пузырьков

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002670228
Дата охранного документа: 19.10.2018
19.01.2019
№219.016.b1e9

Снаряд для стрельбы в водной среде

Изобретение относится к снарядам, движущимся в водной среде. Снаряд содержит корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду. В качестве реактивного двигателя...
Тип: Изобретение
Номер охранного документа: 0002677506
Дата охранного документа: 17.01.2019
02.02.2019
№219.016.b5da

Устройство снижения заметности космического аппарата при наблюдении в видимом диапазоне спектра

Изобретение относится к способам укрытия или маскировки и может быть использовано для снижения заметности космического аппарата в видимом диапазоне спектра. Устройство снижения заметности космического аппарата при его наблюдении содержит маскировочное покрытие из материала, наружная поверхность...
Тип: Изобретение
Номер охранного документа: 0002678633
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b662

Способ защиты космического аппарата от столкновения с активно сближающимся объектом

Изобретение относится к космической технике и может использоваться для защиты космического аппарата с активно сближающимся объектом. Защита космического аппарата от столкновения с активно сближающимся объектом осуществляется по регистрации непрерывной последовательности сигналов с нарастающей...
Тип: Изобретение
Номер охранного документа: 0002678759
Дата охранного документа: 31.01.2019
21.02.2019
№219.016.c559

Устройство для защиты космического аппарата от высокоскоростного ударного воздействия частиц космического мусора

Изобретение относится к области обеспечения долговременной устойчивости космической деятельности и может быть использовано для защиты космического аппарата (КА) от столкновения с частицами космического мусора (КМ). Устройство для защиты КА от высокоскоростного ударного воздействия частиц КМ...
Тип: Изобретение
Номер охранного документа: 0002680359
Дата охранного документа: 19.02.2019
01.03.2019
№219.016.d0cf

Способ измерения интегрального коэффициента излучения поверхности теплозащитных материалов

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. Согласно заявленному способу в предварительно нагретый цилиндрический образец теплозащитного материала, размещенного в вакуумированной камере, устанавливается...
Тип: Изобретение
Номер охранного документа: 0002468360
Дата охранного документа: 27.11.2012
29.03.2019
№219.016.eddd

Установка для исследования динамики всплытия пузырькового кластера в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для...
Тип: Изобретение
Номер охранного документа: 0002683147
Дата охранного документа: 26.03.2019
03.04.2019
№219.016.fac7

Способ управления движением сложной формации группы космических аппаратов

Изобретение относится к управлению движением вращающейся связки космических аппаратов (КА). Способ включает переориентацию в пространстве маршевой двигательной установки (МДУ), расположенной в центре вращения связки и связанной тросами с КА. Концы тросов закрепляют на внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002683700
Дата охранного документа: 01.04.2019
+ добавить свой РИД