×
13.01.2017
217.015.7c27

Результат интеллектуальной деятельности: СПОСОБ НИЗКОТЕМПЕРАТУРНОГО РАЗЛОЖЕНИЯ СЕРОВОДОРОДА С ПОЛУЧЕНИЕМ ВОДОРОДА И СЕРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода, и может применяться для производства водорода и серы из сероводорода. Способ включает пропускание сероводорода при температуре 0-35°C через слои катализатора и сорбента серы, загруженные в последовательно установленные модули. В качестве катализатора используют стружку нержавеющей стали толщиной 0,1-0,2 мм и длиной 1,5-5,5 мм, а количество модулей с катализатором и сорбентом серы составляет 6-12. Образующуюся в последнем модуле газовую смесь пропускают через раствор этаноламина для очистки водорода от остатков сероводорода с последующей десорбцией сероводорода из раствора этаноламина. Десорбцию серы с сорбента серы проводят азотом при температуре 140-160°C. Изобретение позволяет повысить степень конверсии сероводорода и предотвратить загрязнение катализатора. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области газо- и нефтепереработки, а именно к способам разложения и утилизации сероводорода, и может применяться для производства водорода и серы из сероводорода.

Сероводород является основным побочным продуктом нефтепереработки и в больших количествах содержится в пластовом флюиде нефтегазоконденсатных месторождениях. Традиционно на газонефтеперерабатывающих заводах сероводород перерабатывается методом Клауса термическим разложением с получением серы. Недостатком такого метода является высокая температура процесса и невозможность получения водорода.

Прямое разложение сероводорода на серу и водород является эндотермическим процессом и может с заметной скоростью протекать лишь при достаточно высоких температурах. Однако использование катализаторов позволяет существенно снизить температуру разложения сероводорода на водород и серу. Вывод же одного из выделившихся компонентов из системы приводит к смещению равновесия реакции в сторону образования продуктов разложения.

Известен способ каталитического разложения сероводорода на водород и серу, включающий циркуляцию сероводородсодержащего газа через слой катализатора при температуре 450-800°C с отводом образовавшейся серы из циркулирующего газа (US 3962409, С01В 17/04, 08.06.1976). Недостатком известного способа является высокая температура процесса и низкая равновесная степень разложения сероводорода в указанном диапазоне температур (не более 15%).

Известен способ получения водорода и элементарной серы из сероводорода (Патент РФ №2216506, кл. 7 С01В 17/04, 3/06, опубл. 20.11.2003), включающий пропускание исходного сероводородсодержащего газа через слой твердого материала, способного адсорбировать сероводород с выделением водорода и образованием твердых серосодержащих соединений на поверхности материала, периодическую регенерацию слоя твердого материала путем разложения указанных серосодержащих соединений и выделения паров элементарной серы. При этом пропускание исходного сероводородсодержащего газа через слой твердого материала осуществляют при температуре ниже 200°C. В качестве указанного твердого материала выбирают материал, обладающий способностью активировать сероводород при температуре ниже 200°C, а регенерацию производят путем пропускания регенерирующего газа, не содержащего сероводород или содержащего его в концентрации ниже, чем в исходном сероводородсодержащем газе, с температурой не выше 350°C. Недостатком данного способа является необходимость частой регенерации твердого материала для удаления серы.

Наиболее близким к предлагаемому техническому решению является способ разложения сероводорода с получением водорода и серы (Патент РФ №2239594, кл. 7 С01В 17/04, 3/06, опубл. 10.11.2004), включающий контактирование сероводородсодержащего газа через слой твердого материала, способного разлагать сероводород с выделением водорода и образованием серосодержащих соединений на поверхности материала, периодическую регенерацию материала путем разложения указанных серосодержащих соединений и выделения серы, при этом разложение сероводорода осуществляют в хемосорбционно-каталитическом режиме при температуре ниже температуры плавления серы с получением водорода и поверхностных хемосорбированных серосодержащих соединений, реактивацию осуществляют при температуре ниже температуры плавления серы, а регенерацию осуществляют при температуре выше температуры плавления серы.

Недостатком способа является цикличность процесса, связанная с необходимостью как реактивации, так и регенерации твердого материала катализатора и низкая степень разложения сероводорода при проведении процесса в непрерывном режиме.

Задачей изобретения является создание эффективного способа низкотемпературного разложения сероводорода с получением водорода и серы, обеспечивающего проведение процесса в непрерывном режиме.

Техническим результатом, достигаемым при реализации изобретения, является повышение степени конверсии сероводорода и предотвращение загрязнения катализатора.

Технический результат достигается за счет того, что в способе низкотемпературного разложения сероводорода с получением водорода и серы, включающем пропускание сероводорода через слой катализатора, сероводород пропускают при температуре 0-35°C через слои катализатора и сорбента серы, загруженные в последовательно установленные модули, причем в качестве катализатора используют стружку нержавеющей стали толщиной 0,1-0,2 мм и длиной 1,5-5,5 мм, а количество модулей с катализатором и сорбентом серы составляет 6-12, при этом образующуюся в последнем модуле газовую смесь пропускают через раствор этаноламина для очистки водорода от остатков сероводорода с последующей десорбцией сероводорода из раствора этаноламина, а десорбцию серы с сорбента серы проводят азотом при температуре 140-160°C.

В качестве сорбента серы может быть использован γ-Al2O3.

Десорбированный сероводород может быть возвращен на вход первого модуля.

Использование модулей с катализатором и сорбентом серы в количестве 6-12 обеспечивает содержание водорода в газовой фазе более 75 об. %. Серу с сорбента серы по мере насыщения серой десорбируют азотом при температуре 140-160°C.

Установлено, что при использовании в качестве катализатора нержавеющей стали продукты реакции содержат водород и газообразную двухатомную серу в виде S2. При этом сера не осаждается на металлическом катализаторе, а вместе с водородом и непрореагировавшим сероводородом поступает на сорбент серы, где она адсорбируется и выводится их газовой смеси. Газовая фаза после удаления газообразной серы, содержащая водород и сероводород, поступает в следующий по ходу газа модуль, где также происходят каталитическое разложение сероводорода с образованием водорода и газообразной серы и адсорбция серы сорбентом и так далее.

Учитывая, что константа равновесия реакции низкотемпературной каталитической конверсии сероводорода на водород и серу не превышает 15%, вывод из реакционной зоны одного из газообразных продуктов реакции, в частности, образующейся газообразной серы и использование 6-12 последовательно установленных модулей с катализатором и сорбентом серы обеспечивают степень конверсии сероводорода порядка 75-88 об. % и получение водорода, содержащего 12-25 об. % сероводорода. Очистка газовой смеси от сероводорода путем поглощения непрореагировавшего сероводорода раствором этаноламина позволяет получить чистый водород. При регенерации сорбента серы путем десорбции серы в токе азота при температуре 140-160°C получается жидкая сера.

Следует отметить, что получаемый водород, содержащий 12-25 об. % сероводорода, может быть использован непосредственно для производственных целей, например для гидроочистки нефтепродуктов от серосодержащих соединений. Кроме того, насыщенный серой сорбент серы можно использовать в качестве модифицирующей добавки, широко используемой при производстве асфальтобетонных изделий.

При увеличении количества модулей с катализатором и сорбентом серы в количестве более 12 степень конверсии сероводорода повышается незначительно, но при этом существенно увеличивается металлоемкость процесса. При уменьшении числа модулей менее 6 степень конверсии сероводорода снижается.

Использование стружки нержавеющей стали толщиной 0,1-0,2 мм и длиной 1,5-5,5 мм предотвращает загрязнение катализатора, что позволит проводить процесс низкотемпературного разложения сероводорода в непрерывном режиме. При этом уменьшение размеров стружек менее их нижних пределов приводит к удорожанию процесса их получения. Увеличение размеров стружек более их верхних пределов приводит к уменьшению удельной поверхности катализатора и снижению степени конверсии сероводорода.

При увеличении температуры процесса более 35°C степень конверсии сероводорода снижается. При температурах ниже 0°C показатели процесса практически не изменяются.

При проведении десорбции серы с сорбента серы при температуре 140-160°C обеспечиваются минимальные значения вязкости жидкой серы. Увеличение температуры десорбции серы выше 160°C или уменьшение ниже 140°C приводит к резкому увеличению вязкости жидкой серы и снижению степени десорбции серы (выхода серы).

Таким образом, в заявляемом способе предлагается сочетание низкотемпературного каталитического процесса разложения сероводорода на поверхности металлического катализатора и последующего удаления газообразной серы из объема образующихся продуктов реакции с многократным повторением процессов каталитического разложения сероводорода и адсорбции газообразной серы при последовательном пропускании газовой смеси через слои катализатора и сорбента серы.

В заявленном способе используются:

- нержавеющая сталь марок 12Х18Н10Т и 08Х18Н10Т по ГОСТ 5949-75;

- оксид алюминия модификации γ-Al2O3 по ГОСТ 23683-89;

- сероводород, полученный путем взаимодействия товарной серы с водородом при 400°C в присутствии сульфидных катализаторов.

Сущность изобретения описывается следующим примером.

Сероводород при температуре 0-35°C со скоростью 1 л/ч в течение 3-48 ч пропускают через слои катализатора и сорбента серы, загруженные в последовательно установленные модули. В качестве катализатора используют стружку нержавеющей стали толщиной 0,1-0,2 мм и длиной 1,5-5,5 мм, в качестве сорбента серы - γ-Al2O3. Образующуюся газовую смесь пропускают через раствор этаноламина для очистки водорода от сероводорода, раствор этаноламина регенерируют путем нагревания и десорбции сероводорода, регенерированный раствор возвращают на стадию очистки водорода от сероводорода, десорбированный сероводород возвращают на вход первого модуля. Количество модулей с катализатором и сорбентом серы составляет 6-12. Сорбент серы по мере насыщения серой выводят из системы, направляют на регенерацию для выделения элементарной серы. Десорбцию серы с сорбента серы осуществляют азотом при температуре 140-160°C. Регенерированный сорбент серы используют повторно для сорбции серы. Газовую смесь после последнего модуля перед поступлением на очистку от сероводорода анализируют на содержание водорода и сероводорода. Продуктами разложения сероводорода по предлагаемому способу является водород и сера.

Для сравнения проводили разложение сероводорода как в прототипе с использованием в качестве катализатора дисульфида молибдена MoS2 и стружки нержавеющей стали. Сероводород пропускали в течение 3 ч.

Показатели конверсии сероводорода в водород и серу приведены в таблице.

Как видно из таблицы, использование предлагаемого способа позволяет провести разложение сероводорода с получением водорода и серы в непрерывном режиме, повысить и обеспечить степень конверсии сероводорода более 75%.

В качестве сорбента серы также могут быть также использованы α-Al2O3, SiO2 или Сибунит.

Таким образом, реализация предлагаемого способа низкотемпературного разложения сероводорода с получением водорода и серы позволяет осуществить разложение сероводорода, не загрязняя катализатор, что позволит проводить процесс низкотемпературного разложения сероводорода в непрерывном режиме при низких температурах 0-35°C с получением газовой смеси водорода и сероводорода, содержащей 75-88 об. % водорода. После очистки газовой смеси от сероводорода получают товарный водород. При этом исключается необходимость периодических процессов реактивации и регенерации катализатора. Продуктами разложения сероводорода при реализации предлагаемого способа являются водород и сера. Степень десорбции серы в рекомендуемом диапазоне температур десорбции (140-160°C) составляет 86,9-90,9%.

Источник поступления информации: Роспатент

Showing 91-100 of 131 items.
27.12.2018
№218.016.ac64

Способ приготовления универсального бифункционального катализатора для превращения синтез-газа и углеводородов в бензиновые фракции

Изобретение относится к области каталитического синтеза бензиновых фракций из синтез-газа и процессов превращения углеводородов в среде синтез-газа, в частности к способам приготовления универсального бифункционального катализатора (БФК) для упомянутых процессов, и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002676086
Дата охранного документа: 26.12.2018
10.01.2019
№219.016.ade3

Способ импульсной наземной геологоразведки (варианты)

Изобретения относятся к области геофизики и могут быть использованы для обнаружения и контроля газонасыщенных пластов методом индукционного зондирования. Технический результат: расширение информационных возможностей. Сущность: используют две или более пар индукционных петель, расположенных на...
Тип: Изобретение
Номер охранного документа: 0002676556
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae02

Устройство калибровки скважинного прибора для зондирования (варианты)

Изобретения относятся к области метрологического обеспечения скважинной геофизической аппаратуры и могут быть использованы для калибровки скважинной аппаратуры, предназначенной для исследования анизотропного околоскважинного пространства, выявления и геометризации не пересекающих ствол скважины...
Тип: Изобретение
Номер охранного документа: 0002676555
Дата охранного документа: 09.01.2019
16.01.2019
№219.016.b006

Способ электромагнитного зондирования околоскважинного пространства газовых и нефтяных скважин и устройство для его осуществления

Изобретения относятся к области исследования анизотропного околоскважинного пространства и могут быть использованы для поиска, разведки и эксплуатации месторождений нефти и газа. Способ электромагнитного зондирования заключается в том, что зондирование осуществляют посредством устройства,...
Тип: Изобретение
Номер охранного документа: 0002677174
Дата охранного документа: 15.01.2019
30.03.2019
№219.016.f9fd

Утяжеленный минерализованный буровой раствор для вскрытия продуктивных пластов с аномально высоким пластовым давлением

Изобретение относится к нефтяной и газовой промышленности. Технический результат - сохранение фильтрационно-емкостных свойств и профилактика осложнений при бурении и первичном вскрытии продуктивных пластов в условиях, характеризующихся высокими забойными температурами и аномально высокими...
Тип: Изобретение
Номер охранного документа: 0002683448
Дата охранного документа: 28.03.2019
21.04.2019
№219.017.363b

Кернодержатель

Изобретение относится к устройствам для исследования физических свойств образцов керна горных пород в лабораторных условиях и может найти применение в геологии, горной и нефтегазодобывающей промышленности. Кернодержатель содержит вертикально установленную металлическую трубу с помещенным в ней...
Тип: Изобретение
Номер охранного документа: 0002685466
Дата охранного документа: 18.04.2019
27.04.2019
№219.017.3cc2

Фильтрационная установка для физического моделирования процессов вытеснения нефти

Изобретение относится к исследованию фильтрационно-емкостных свойств горных пород и может быть использовано в научно-исследовательских целях для моделирования фильтрационных процессов и прогнозирования коэффициентов вытеснения нефти при проектировании систем разработки конкретного...
Тип: Изобретение
Номер охранного документа: 0002686139
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d16

Способ заканчивания и эксплуатации скважины подземного хранилища газа

Изобретение относится к газовой отрасли и может быть использовано при создании и эксплуатации подземных хранилищ газа (ГГХГ). Способ заканчивания и эксплуатации скважины ПХГ заключается в том, что осуществляют бурение до кровли продуктивного пласта, спуск и цементирование эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002686259
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d87

Способ очистки газов от кислых компонентов и установка для его реализации

Группа изобретений относится к нефтегазовой и химической промышленности, а именно к установкам и способам очистки от HS и CO природных, попутных, нефтезаводских и других промышленных высокосернистых углеводородных газов под давлением с использованием в качестве абсорбента водного раствора...
Тип: Изобретение
Номер охранного документа: 0002686186
Дата охранного документа: 24.04.2019
17.08.2019
№219.017.c101

Способ получения серной кислоты

Изобретение может быть использовано в химической, нефтеперерабатывающей промышленности. Для получения серной кислоты сероводородсодержащий газ сжигают с образованием технологического газа, содержащего диоксид серы и воду. Затем его охлаждают и подвергают двухступенчатой конверсии в контактном...
Тип: Изобретение
Номер охранного документа: 0002697563
Дата охранного документа: 15.08.2019
Showing 81-87 of 87 items.
29.04.2019
№219.017.46c2

Способ очистки сточных вод от метанола

Изобретение относится к обработке воды. В метанолсодержащие сточные воды вводят при перемешивании нитрит натрия и соляную кислоту. Образующийся метилнитрит направляют на абсорбцию. Насыщенный раствор абсорбента подают в ректификационную колонну для регенерации метанола. Кубовый остаток после...
Тип: Изобретение
Номер охранного документа: 0002468999
Дата охранного документа: 10.12.2012
24.05.2019
№219.017.5f0a

Способ обогащения гелием гелийсодержащего природного газа

Изобретение относится к нефтегазовой и химической промышленности, в частности к способу обогащения гелием гелийсодержащего природного газа. Cпособ обогащения гелием гелийсодержащего природного газа включает введение основного потока гелийсодержащего природного газа в канал, в котором...
Тип: Изобретение
Номер охранного документа: 0002688509
Дата охранного документа: 21.05.2019
09.06.2019
№219.017.7688

Осмотическая энергоустановка непрерывного действия

Осмотическая энергоустановка предназначена для перекачки высокоминерализованных вод, например попутных вод нефтегазодобычи. Энергоустановка содержит резервуар, мембранный аппарат, выполненный в виде комплекта модулей половолоконной конструкции, насос для подачи высокоминерализированного...
Тип: Изобретение
Номер охранного документа: 0002271463
Дата охранного документа: 10.03.2006
09.06.2019
№219.017.7a47

Способ технического обслуживания высокотехнологичного оборудования на основе мониторинговых систем диагностирования

Изобретение относится к области эксплуатации высокотехнологичного оборудования преимущественно роторного типа и может быть использовано для формирования систем управления эксплуатацией оборудования по его техническому состоянию. На первом этапе способа с использованием, например, стационарной...
Тип: Изобретение
Номер охранного документа: 0002381475
Дата охранного документа: 10.02.2010
10.07.2019
№219.017.b052

Способ совместной эксплуатации нескольких объектов в добывающей скважине и устройство для его осуществления

Изобретение относится к нефтегазодобывающей промышленности, и может быть применено для добычи углеводородов из низконапорных коллекторов вышележащего пласта и гидроминерального сырья из коллекторов высоконапорного нижележащего пласта. Способ включает спуск колонны НКТ, оснащенной устройствами...
Тип: Изобретение
Номер охранного документа: 0002438008
Дата охранного документа: 27.12.2011
10.12.2019
№219.017.ebe8

Способ эксплуатации обводненной газовой или газоконденсатной скважины

Изобретение относится к нефтегазодобывающей промышленности, а именно к эксплуатации обводненных газовых или газоконденсатных скважин, и может быть использовано на нефтегазоконденсатных месторождениях при разработке газовых и газоконденсатных залежей на завершающей стадии. Согласно способу...
Тип: Изобретение
Номер охранного документа: 0002708430
Дата охранного документа: 06.12.2019
03.07.2020
№220.018.2dba

Способ защиты подземных вод от загрязнений из поверхностных хранилищ жидких отходов, содержащих токсичные или радиоактивные вещества

Изобретение может быть использовано при строительстве, эксплуатации и ликвидации поверхностных хранилищ жидких отходов, содержащих токсичные или радиоактивные вещества, а также при очистке загрязненных вод поверхностных водоемов. Способ защиты подземных вод от загрязнений из поверхностных...
Тип: Изобретение
Номер охранного документа: 0002725250
Дата охранного документа: 30.06.2020
+ добавить свой РИД