×
13.01.2017
217.015.7aac

Результат интеллектуальной деятельности: СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ГАЗОБЕТОНА АВТОКЛАВНОГО ТВЕРДЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к промышленности строительных материалов, а именно к составам для производства теплоизоляционного автоклавного газобетона и изделий на его основе, которые могут применяться для теплоизоляции промышленных установок и ограждающих конструкций зданий и сооружений. Сырьевая смесь для изготовления газобетона автоклавного твердения включает, мас.%: портландцемент 8-14, негашеную известь 12-18, песок кварцевый 37-40, полифункциональный газообразователь на основе алюминиевой пасты и поверхностно-активных веществ 0,15-0,40, дисперсию многослойных углеродных нанотрубок в растворе суперпластификатора на основе поликарбоксилатов, активированных с помощью ультразвукового диспергатора, содержащую 1-3% многослойных углеродных нанотрубок, 0,005-0,02, воду с температурой 45-55°С 32-38. Технический результат - оптимизация процессов вспучивания и структурообразования ячеистобетонной массы, снижение плотности и теплопроводности получаемого газобетона при сохранении прочностных показателей. 2 табл.

Изобретение относится к промышленности строительных материалов, а именно к составам для производства теплоизоляционного автоклавного газобетона и изделий на его основе, которые могут применяться для теплоизоляции промышленных установок и ограждающих конструкций зданий и сооружений.

Известна сырьевая смесь для получения газобетона автоклавного твердения, включающая, мас.%: бездобавочный портландцемент 32,67-42,71, кварцевый песок с тонкостью помола 3500-4100 см2/г 53,071-63,865, двуводный гипс 2,92-4,17, алюминиевая пудра или паста 0,095-0,119, вода затворения при температуре 42-52°С в количестве, соответствующем отношению В/Т, равному 0,55-0,63, при этом конечная щелочность сырьевой смеси равна 26-32%. Указанная выше сырьевая смесь содержит бездобавочный портландцемент марки М500 Д0, двуводный гипс с содержанием сульфата кальция не менее 95% (патент RU №2543249 от 27.02.2015 г.).

Недостатком известного состава является то, что получаемый газобетон имеет повышенную плотность (490-510 кг/м3). Также к недостаткам можно отнести отсутствие в составе сырьевой смеси извести, наличие которой определяет полноту протекания реакции газовыделения в начальный период порообразования газобетона, а также способствует набору структурной прочности в период автоклавной обработки изделий.

Наиболее близкой смесью того же назначения к заявляемому изобретению по совокупности признаков является сырьевая смесь для получения наноструктурированного автоклавного газобетона, включающая следующие компоненты, мас.%: суспензия тонкомолотого песка (на сухое вещество) 62,5-72,5, известково-кремнеземистое вяжущее, при соотношении компонентов, мас.%: негашеная известь 75-85 и кварцевый песок 15-25, 25-35, гипс 1,5-2,5, алюминиевая паста или пудра 0,05-0,1, вода до плотности 1,75-1,80 кг/л (патент RU №2448929 от 27.04.2012 г.). Данный состав принят за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемой смеси - известь негашеная, кварцевый песок, алюминиевый газообразователь, вода.

Недостатками известного состава, принятого за прототип, являются высокие показатели плотности и теплопроводности получаемого газобетона, что ограничивает его использование в качестве эффективного утеплителя.

Задачей, на решение которой направлено заявляемое изобретение, является снижение плотности и теплопроводности изделий из газобетона при сохранении прочностных показателей качества в рамках значений, допустимых ГОСТ 31359-2007.

Техническим результатом является оптимизация процессов вспучивания и структурообразования ячеистобетонной массы.

Поставленная задача была решена за счет того, что известная сырьевая смесь для изготовления газобетона автоклавного твердения, включающая негашеную известь, песок кварцевый, алюминиевый газообразователь и воду, дополнительно содержит портландцемент и дисперсию многослойных углеродных нанотрубок в растворе суперпластификатора на основе поликарбоксилатов, активированных с помощью ультразвукового диспергатора, содержащую 1-3% многослойных углеродных нанотрубок, а в качестве алюминиевого газообразователя - полифункциональный газообразователь на основе алюминиевой пасты и поверхностно-активных веществ, при следующем соотношении ингредиентов, мас.%:

портландцемент 8-14
известь негашеная 12-18
Песок кварцевый 37-40
вода с температурой 45-55°С 32-38
указанный алюминиевый газообразователь 0,15-0,40
указанная дисперсия многослойных углеродных
нанотрубок 0,005-0,02

Отличительными признаками заявляемой смеси от газобетонной массы по прототипу являются: наличие в составе смеси портландцемента; введение в состав смеси дисперсии многослойных углеродных нанотрубок (МУНТ) в растворе суперпластификатора на основе поликарбоксилатов, активированных с помощью ультразвукового диспергатора, содержащей 1-3% МУНТ; использование в качестве алюминиевого газообразователя полифункционального газообразователя на основе алюминиевой пасты и поверхностно-активных веществ; иное количественное соотношение используемых ингредиентов, мас.%: портландцемент - 8-14; известь негашеная - 12-18; песок кварцевый - 37-40; вода с температурой 45-55°С - 32-38; указанный алюминиевый газообразователь - 0,15-0,40; указанная дисперсия многослойных углеродных нанотрубок - 0,005-0,02.

Введение дисперсии многослойных углеродных нанотрубок (МУНТ) «Ful Vec» в растворе суперпластификатора на основе поликарбоксилатов, активированных с помощью ультразвукового диспергатора, содержащей 1-3% МУНТ, позволяет сохранить требуемую прочность материала при снижении марки по плотности с D300 до D200.

Содержание в дисперсии многослойных углеродных нанотрубок в количестве менее 1% не оказывает существенного влияния на свойства заявляемого материала.

Содержание в дисперсии многослойных углеродных нанотрубок в количестве более 3% нецелесообразно в связи с высокой стоимостью данного компонента, а также отсутствием существенного влияния на физико-механические характеристики материала.

В качестве порообразователя использовался полифункциональный газообразователь на основе алюминиевой пасты и поверхностно-активных веществ фирмы ECKART «STAPA* Alupor №905». Применение данного порообразователя в составе смеси в заявляемом количестве позволяет стабилизировать процесс структурообразования газобетона, что оказывает положительное влияние на физико-механические и теплотехнические характеристики изделий.

Экспериментально установлено, что замена широко применяемых в материалах-аналогах алюминиевых пудр (ПАП-1 и ПАП-2) на представленный полифункциональный газообразователь позволяет снизить плотность и теплопроводность изделий из газосиликата на 40-55%. Расход данного газообразователя составляет 0,15-0,4% от массы всех компонентов. Перерасход газообразователя приводит к интенсивному вспучиванию массива и его дальнейшей усадке, что негативно сказывается на эксплуатационных свойствах газобетона. Уменьшение количества газообразователя приводит к недостаточному вспучиванию газомассы, что влечет за собой увеличение плотности ячеистобетонного массива.

Введение в состав смеси портландцемента позволяет стабилизировать набор пластической прочности газобетона в доавтоклавный период производства.

Использование для затворения сырьевых компонентов воды с температурой 45-55°С позволяет интенсифицировать процессы газообразования и вспучивания ячеистобетонного массива.

Дополнительную прочность и долговечность изделиям предлагаемого состава придает их автоклавная обработка, которая является основным процессом, превращающим механическую смесь разнородных компонентов в химические соединения (гидросиликаты кальция различного минералогического состава), связывающие зерна песка.

Предлагаемое техническое решение позволяет получить эффективный теплоизоляционный автоклавный газобетон, а также снизить его плотность и теплопроводность.

Для получения газобетона используют следующие компоненты:

- портландцемент по ГОСТ 31108-2003;

- известь негашеную по ГОСТ 9179;

- песок кварцевый по ГОСТ 8736;

- воду с температурой 45-55°С по ГОСТ 23732;

- алюминиевый газообразователь фирмы ECKART «STAPA* Alupor №905»;

- дисперсию многослойных углеродных нанотрубок (МУНТ) «Ful Vec» в растворе суперпластификатора на основе поликарбоксилатов, активированных с помощью ультразвукового диспергатора, содержащую 1-3% МУНТ.

Сырьевую смесь для изготовления газобетона получают следующим образом.

На начальном этапе производства получают известково-кремнеземистое вяжущее (ИКВ) и песчаный шлам. Подготовка известково-кремнеземистого вяжущего включает в себя совместное измельчение извести и песка (15% от ИКВ) до удельной поверхности 2700-2900 см2/г. Подготовку песчаного шлама осуществляют мокрым помолом кремнеземистого компонента. Для осуществления мокрого помола в мельницу вводят воду температуры 45°С. В качестве мелющих тел используют металлические шары. В результате помола плотность шлама составляет 1,6-1,7 кг/л.

После подготовки всех сырьевых компонентов смесь тщательно перемешивают. Последовательность перемешивания: отдельно готовят сухой компонент - цемент и ИКВ, а также жидкий компонент - газообразователь, воду и дисперсию МУНТ. Далее перемешивают сухой и жидкий компоненты.

С целью интенсификации процесса вспучивания температура воды затворения должна находиться в интервале от 45-55°С.

Однородность смеси и равномерность ее вспучивания обеспечивается за счет тщательного перемешивания массы. Излишняя продолжительность перемешивания вредна, так как возможно начало процесса газообразования.

Перед формованием с помощью вискозиметра Суттарда определяют подвижность (текучесть) смеси.

Заливку смеси осуществляют в заранее подготовленную форму (очищенную и смазанную). Объем заливаемой смеси принимается с учетом вспучивания на 2/3 или 3/4 высоты формы.

После заливки газобетонной массы начинается ее интенсивное вспучивание, которое продолжается 10-15 минут.

Для предотвращения возможного оседания массива и набора им пластической прочности форму помещают в камеру тепловой выдержки, температура воздуха в которой 40-60°С.

Гидротермальную обработку газобетонных образцов проводят в промышленном автоклаве при избыточном давлении от 8 до 12 атм и соответствующей этому давлению температуре 150-200°С.

По описанному способу были изготовлены составы сырьевых смесей с различным соотношением ингредиентов.

Приготовленные составы прошли лабораторные испытания.

В таблице 1 приведены заявляемые составы сырьевых смесей и известный состав.

В таблице 2 представлены результаты лабораторных испытаний образцов, изготовленных из заявляемых и известных составов.

Как видно из таблицы 2, образцы автоклавного газобетона заявленных составов имеют показатели качества, по своему значению превышающие теплотехнические характеристики прототипа. Кроме того, характеристики образцов разработанного материала соответствуют требованиям ГОСТ 31359-2007.

Преимущество предлагаемого технического решения состоит в том, что оно способствует развитию автоклавного газобетона как эффективного утеплителя ограждающих конструкций зданий и сооружений, а также позволяет применять данный материал для теплоизоляции промышленных установок.

Сырьевая смесь для изготовления газобетона автоклавного твердения, включающая негашеную известь, песок кварцевый, алюминиевый газообразователь и воду, отличающаяся тем, что она дополнительно содержит портландцемент и дисперсию многослойных углеродных нанотрубок в растворе суперпластификатора на основе поликарбоксилатов, активированных с помощью ультразвукового диспергатора, содержащую 1-3% многослойных углеродных нанотрубок, а в качестве алюминиевого газообразователя полифункциональный газообразователь на основе алюминиевой пасты и поверхностно-активных веществ, при следующем соотношении ингредиентов, мас.%:
Источник поступления информации: Роспатент

Showing 81-90 of 122 items.
17.02.2018
№218.016.2d89

Волоконно-оптический датчик объемного напряженного состояния

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в...
Тип: Изобретение
Номер охранного документа: 0002643692
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.3149

Способ щелевой гидропескоструйной перфорации

Изобретение относится к области нефтяной и газовой промышленности, а также к области эксплуатации подземных вод водозаборными скважинами. Для осуществления способа щелевой гидропескоструйной перфорации определяют местоположения резов, спускают в скважину гидропескоструйный перфоратор с...
Тип: Изобретение
Номер охранного документа: 0002645059
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3397

Система проветривания уклонного блока нефтешахты

Изобретение относится к горной промышленности и может быть использовано для проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, подземная добыча которых производится шахтным способом с использованием тепловых методов воздействия на пласт. Технический...
Тип: Изобретение
Номер охранного документа: 0002645690
Дата охранного документа: 27.02.2018
04.04.2018
№218.016.339d

Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый...
Тип: Изобретение
Номер охранного документа: 0002645693
Дата охранного документа: 27.02.2018
04.04.2018
№218.016.33eb

Способ выявления витковых замыканий в обмотках трехфазных трансформаторов

Изобретение относится к электроэнергетике и может быть использовано для выявления витковых замыканий в обмотках трехфазных трансформаторов. Способ основан на измерениях активной мощности и напряжений на холостом ходу. Измерения проводят при отсутствии соединений между обмотками трансформатора,...
Тип: Изобретение
Номер охранного документа: 0002645811
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.350f

Устройство для определения остаточных напряжений

Изобретение относится к области измерительной техники и может быть использовано для определения остаточных технологических напряжений в образцах, вырезанных из исследуемой детали. Устройство содержит основание со стойкой, травильную ванну, датчики деформации и толщины образца, соединенные с...
Тип: Изобретение
Номер охранного документа: 0002645843
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35c2

Телеметрическая система мониторинга ствола скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для передачи информации между забоем и устьем, и может быть использовано для определения направления бурения скважин с горизонтальным участком, в том числе непосредственно в процессе бурения роторным способом....
Тип: Изобретение
Номер охранного документа: 0002646287
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.3dfb

Способ получения терморасширенного графита

Изобретение относится к технологии углеграфитовых материалов и может быть использовано при получении уплотнений, прокладок, композиционных материалов, катализаторов, сорбентов. Измельченный натуральный чешуйчатый графит интеркалируют серной кислотой в присутствии окислителя - перекиси...
Тип: Изобретение
Номер охранного документа: 0002648315
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.4eee

Система передачи информации о пространственном расположении на расстояние в скважине

Изобретение относится к скважинным телеметрическим системам, используемым при бурении скважин, а именно к трубе с проводной линией, такой как бурильная труба, которая приспособлена для передачи данных и/или энергии между одним или несколькими участками внутри ствола скважины и поверхностью....
Тип: Изобретение
Номер охранного документа: 0002652779
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4f05

Система проветривания уклонного блока нефтешахты

Изобретение относится к горной промышленности и может быть использовано для экономичного проветривания уклонных блоков, где подземная добыча производится шахтным способом с тепловыми методами воздействия на пласт. Технический результат заключается в снижении затрат электроэнергии на...
Тип: Изобретение
Номер охранного документа: 0002652769
Дата охранного документа: 28.04.2018
Showing 81-87 of 87 items.
17.02.2018
№218.016.2d89

Волоконно-оптический датчик объемного напряженного состояния

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в...
Тип: Изобретение
Номер охранного документа: 0002643692
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.3149

Способ щелевой гидропескоструйной перфорации

Изобретение относится к области нефтяной и газовой промышленности, а также к области эксплуатации подземных вод водозаборными скважинами. Для осуществления способа щелевой гидропескоструйной перфорации определяют местоположения резов, спускают в скважину гидропескоструйный перфоратор с...
Тип: Изобретение
Номер охранного документа: 0002645059
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3397

Система проветривания уклонного блока нефтешахты

Изобретение относится к горной промышленности и может быть использовано для проветривания уклонных блоков на месторождениях высоковязкой нефти и природного битума, подземная добыча которых производится шахтным способом с использованием тепловых методов воздействия на пласт. Технический...
Тип: Изобретение
Номер охранного документа: 0002645690
Дата охранного документа: 27.02.2018
04.04.2018
№218.016.339d

Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины

Изобретение относится к области роторного бурения скважин и может быть использовано при бурении наклонно направленных и горизонтальных скважин. Устройство обеспечения геостационарности навигационного оборудования телеметрической системы мониторинга траектории ствола скважины включает пустотелый...
Тип: Изобретение
Номер охранного документа: 0002645693
Дата охранного документа: 27.02.2018
04.04.2018
№218.016.33eb

Способ выявления витковых замыканий в обмотках трехфазных трансформаторов

Изобретение относится к электроэнергетике и может быть использовано для выявления витковых замыканий в обмотках трехфазных трансформаторов. Способ основан на измерениях активной мощности и напряжений на холостом ходу. Измерения проводят при отсутствии соединений между обмотками трансформатора,...
Тип: Изобретение
Номер охранного документа: 0002645811
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.350f

Устройство для определения остаточных напряжений

Изобретение относится к области измерительной техники и может быть использовано для определения остаточных технологических напряжений в образцах, вырезанных из исследуемой детали. Устройство содержит основание со стойкой, травильную ванну, датчики деформации и толщины образца, соединенные с...
Тип: Изобретение
Номер охранного документа: 0002645843
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35c2

Телеметрическая система мониторинга ствола скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для передачи информации между забоем и устьем, и может быть использовано для определения направления бурения скважин с горизонтальным участком, в том числе непосредственно в процессе бурения роторным способом....
Тип: Изобретение
Номер охранного документа: 0002646287
Дата охранного документа: 02.03.2018
+ добавить свой РИД