×
13.01.2017
217.015.7a75

Результат интеллектуальной деятельности: СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения монокристаллов из расплава способом Чохральского. Выращивание кристалла радиусом r сначала осуществляют способом Чохральского путем вытягивания из неподвижного тигля радиусом R, таким, что где ρ - плотность кристалла, ρ - плотность расплава. Готовый кристалл отрывают от расплава и охлаждают до комнатной температуры в ростовой камере. Затем открывают ростовую камеру, извлекают из нагревателя тигель и заменяют на тигель меньшего радиуса R, такого, что после чего закрывают камеру, поднимают температуру до температуры плавления, опускают кристалл до соприкосновения с расплавом и вновь выращивают кристалл путем его постоянного перемещения вниз. Техническим результатом является улучшение структурного совершенства выращиваемых кристаллов за счет снижения в них остаточных механических напряжений и уменьшения плотности дислокаций. 6 ил., 2 пр.

Изобретение относится к способам выращивания монокристаллов из расплава.

Известен способ Чохральского, заключающийся в вытягивании вверх из тигля с расплавом кристалла на вращающуюся затравку [Вильке К-Т. Выращивание кристаллов. Л.: Недра. 1977. С. 600; Современная кристаллография // Под ред. Б.К. Вайнштейна, А.А. Чернова, Л.А. Шувалова М.: Наука, 1980. Т. 3. 346 с.]. Данный способ применяется как для кристаллов, плотность которых ρтв больше, чем плотность их расплава ρж, например для кристаллов парателлурита [Мочалов И.В. Выращивание оптических кристаллов // СПб. 2012. С. 126. 37 с.], так и для кристаллов, плотность которых меньше, чем плотность их расплава, например для кристаллов германия [Колесников А.И., Каплунов И.А., Терентьев И.А. Дефекты различных размерностей в крупногабаритных монокристаллах парателлурита // Кристаллография. 2004. Т. 49. №2. С. 229-233]. Во всех известных патентах, технических документах и научных публикациях, связанных со способом Чохральского, в качестве направления для вытягивания указывается направление вертикально вверх. Только в единственном патенте РФ (RU №2491375, опубл. 27.08.2013) используется вытягивание под углом к вертикали. Известен также способ направленной кристаллизации (RU №2241792, опубл. 10.12.2004), при котором кристалл сначала вытягивается из расплава вверх по Чохральскому, а по достижении определенного диаметра перемещение вверх прекращается и кристалл растет в горизонтальной плоскости за счет понижения температуры до тех пор, пока не достигнет внутренних стенок тигля.

Недостатком всех указанных вариантов реализации способа Чохральского является то, что при вытягивании вверх кристалл перемещается в более холодную область пространства, чем область вблизи фронта кристаллизации. Вследствие этого вертикальный (осевой) температурный градиент ∇T, во-первых, достаточно велик (в любых нагревательных системах, в том числе в системах с дополнительными верхними нагревателями, его значения находятся на уровне не менее 10 К·см-1), а во-вторых, по мере вытягивания вертикальный температурный градиент, особенно вблизи верхнего торца кристалла (в его затравочной части), увеличивается неравномерно. Это препятствует получению малодислокационных и бездислокационных кристаллов из-за невыполнения известного [Современная кристаллография // Под ред. Б.К. Вайнштейна, А.А. Чернова, Л.А. Шувалова М.: Наука, 1980. Т. 3. 346 с.] условия ∇T=const.

В наиболее близком к заявляемому известном из уровня техники способе получения монокристаллов с плотностью, большей плотности расплава, применяется способ выращивания монокристаллов парателлурита из расплава по Чохральскому из неподвижного тигля с программированием скоростей вытягивания и вращения затравки, отличающийся тем, что после выхода на требуемый диаметр вытягивание цилиндрической части кристалла осуществляют при скоростях вращения, соответствующих диапазону чисел Рейнольдса Re=100-150, рассчитанных согласно формуле Re=ω·r(R-r)/ν, где ω - скорость вращения затравки (с-1); R - радиус тигля (см); r - радиус кристалла (см); ν - кинематическая вязкость расплава (см2·с-1), при которых на поверхности расплава наблюдается устойчивая система двух обращающихся вокруг кристалла диаметрально противоположных конвективных ячеек переохлажденного расплава более темного цвета, чем остальная поверхность расплава (RU 2338816 С1, опубл. 20.11.2008).

Применение способа приводит к частичному распаду образовавшихся дефектов структуры кристалла, к снижению механических напряжений в материале и к улучшению его структурного качества в целом. Однако и для прототипа характерен недостаток, общий для всех вариантов способа Чохральского - перемещение растущего кристалла вверх - в холодную зону с большими неравномерными температурными градиентами, приводящими к повышению концентраций различных дефектов структуры материала.

Задача, на решение которой направлено заявленное техническое решение, заключается в улучшении условий выращивания кристаллов из тигля с расплавом и, как следствие, улучшении их структурного качества.

Данная задача достигается за счет того, что в способе выращивания монокристаллов веществ, имеющих плотность, превышающую плотность их расплава, включающем предварительное вытягивание кристалла радиусом r способом Чохральского из неподвижного тигля радиусом R1, таким, что , где ρтв - плотность кристалла, ρж - плотность расплава, полученный кристалл после охлаждения, извлечения из печи и установки другого тигля с меньшим радиусом R2, таким, что , используется в качестве затравки при выращивании из этого тигля кристалла радиусом r путем его постоянного перемещения вниз.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является улучшение структурного совершенства выращиваемых кристаллов за счет снижения в них остаточных механических напряжений и уменьшения плотности дислокаций.

Сущность изобретения поясняется чертежами.

На фиг. 1 представлена схема реализации классического способа Чохральского в аналогах и прототипе.

На фиг. 2 представлена схема реализации предлагаемого способа выращивания кристалла закритического радиуса путем опускания его вниз.

На фиг. 3 представлен кристалл парателлурита диаметром d=71 мм, вытягиваемый вверх способом Чохральского из тигля диаметром D=100 мм.

На фиг. 4 представлен монокристалл парателлурита диаметром d=71 мм, выращенный классическим способом Чохральского из тигля диаметром D=100 мм.

На фиг. 5 представлен монокристалл парателлурита диаметром d=71 мм, выращиваемый согласно изобретению путем опускания вниз в тигель диаметром D=75 мм.

На фиг. 6 представлен монокристалл парателлурита диаметром d=71 мм, выращиваемый согласно изобретению путем опускания вниз в тигель диаметром D=75 мм.

Для достижения указанной цели по отношению к кристаллам веществ, у которых плотность твердой фазы ρтв больше, чем плотность жидкой фазы (расплава) ρж, предлагается не вытягивание вверх, как это осуществляется в классическом способе Чохральского, а перемещение кристалла в обратном направлении - вниз, которое можно также определить как "вдавливание" кристалла в расплав. Такая возможность объясняется следующим образом.

При вытягивании из тигля с расплавом вверх (фиг. 1) истинная скорость роста в вертикальном направлении Vист не равна скорости вытягивания Vв кристалла за счет понижения уровня расплава и всегда больше нее Vист>Vв. Соотношение между этими скоростями выводится из условия баланса масс.

Масса образовавшейся новой твердой фазы (кристалла) при вытягивании за некоторое время τ (на фиг. 1 соответствует заштрихованному объему с постоянной скоростью Vв) должна равняться массе объема убывшего расплава в тигле, определяемого разностью между начальными и конечными уровнями жидкой фазы.

где Sкр=πr2 - площадь сечения кристалла, r - радиус кристалла, Sт=πR2 - площадь поверхности расплава в тигле, R - радиус тигля, Vр - скорость опускания расплава относительно стенок тигля. Поскольку эта скорость равна разности между истиной скоростью роста и скоростью вытягивания, т.е. Vр=Vист-Vв, подставляя эту разность в уравнение (1) и сокращая обе его части на время τ и π, получаем уравнение для истинной скорости роста Vист:

Из уравнения (2) следуют важные технические выводы. Для кристаллов веществ, у которых плотность расплава ρж больше плотности твердой фазы ρтв, при малых, стремящихся к нулю радиусах кристаллов r→0, Vист→Vв, скорость роста практически равна скорости вытягивания Vист≈Vв. При разращивании кристалла до стенок тигля (r→R) истинная скорость увеличивается до конечной величины с максимальным значением . Так, для кристаллов германия (ρж=5,61 г/см3, ρтв=5,3 г/см3) скорость роста оказывается в 20 раз больше скорости вытягивания.

Для кристаллов веществ, у которых плотность расплава ρж меньше плотности твердой фазы ρтв, при малых, стремящихся к нулю радиусах кристаллов r→0, скорость роста также практически равна скорости вытягивания Vист≈Vв. Однако при увеличении радиуса кристалла до критического значения истинная скорость роста согласно уравнению (2) должна стремиться к бесконечности. Поэтому никакое дальнейшее уменьшение мощности нагревательной системы не позволит получить кристалл с радиусом r>rкр, что и наблюдается на практике.

Например, из тигля радиусом R=5 см невозможно вытянуть по Чохральскому кристалл парателлурита (ρж=5 г/см3, ρтв=6,02 г/см3) с радиусом более rк=4,47 см. Такая возможность обеспечивается применением предлагаемого изобретения.

Пусть необходимо вырастить из расплава в тигле с радиусом R длинный кристалл с радиусом r, который больше критического радиуса rк для данного тигля: rк<r<R. Тогда сначала из другого тигля с радиусом R1, большим, чем радиус R, выращивается небольшой кристалл в виде диска с требуемым радиусом r, который меньше критического радиуса для большего тигля. После отрыва от расплава и охлаждения полученный дискообразный кристалл требуемого радиуса r используется как затравочный кристалл для выращивания длинного кристалла. Для этого вместо тигля с радиусом R1 в нагревательную систему устанавливается тигель меньшего радиуса R2, производится расплавление вещества в тигле, к поверхности образовавшегося расплава подводится и опускается дискообразный кристалл, после чего производится выращивание кристалла путем постоянного опускания его, что показано на фиг. 2. Истинная скорость роста кристалла Vист связана со скоростью опускания (вдавливания) кристалла Vв зависимостью, вытекающей из равенства масс выросшей части кристалла и убывшего объема расплава mтв=mж

В отличие от случая, когда радиус кристалла меньше критического радиуса rк, при вдавливании кристалла со скоростью Vв, истинная скорость роста равна не сумме, а разности скорости убыли расплава Vр и скорости вдавливания Vв;

Vист=Vр-Vв, откуда следует (после сокращения обеих частей (3) на πr:

Формула (4) отличается от (2) только знаком слагаемых в знаменателе. Из (4) следует, что при уменьшении радиуса r кристалла до значения rк истинная скорость роста Vист стремится к бесконечности, а при увеличении радиуса кристалла r до значения R, т.е. при приближении кристалла к стенкам тигля, она стремится к конечному значению Vист=Vвρж/(ρтвж). Например, для кристаллов парателлурита Vист≈Vв·5,25, т.е. в 5,25 раз больше скорости вдавливания. При таком способе кристалл все время опускается в освобождающееся от расплава пространство тигля, т.е. в более теплую область ростового пространства с меньшими температурными градиентами, чем при классическом вытягивании по Чохральскому, когда кристалл поднимается в холодную область. Это обеспечивает улучшение структурного совершенства выращиваемых кристаллов за счет снижения в них остаточных механических напряжений и уменьшения плотности дислокаций.

Примеры реализации заявляемого способа при выращивании монокристалла парателлурита (α-TeO2) с плотностью твердой фазы 6,0 г/см3 и плотностью расплава 5,0 г/см3.

Пример 1. Монокристалл парателлурита без применения изобретения, полученный обычным способом Чохральского (согласно RU №2338816, опубл. 20.10.2008 г.):

- диаметр тигля - 100 мм;

- диаметр - 71 мм; высота - 54 мм;

- направление роста - [110];

- скорость вращения - 13 об/мин;

- скорость вытягивания - 0,25 мм/ч;

- истинная вертикальная скорость роста - 0,63 мм/ч;

- средняя плотность дислокаций - 12000 см-2.

Пример 2. Монокристалл с применением изобретения.

а) Сначала из тигля диаметром 100 мм обычным способом Чохральского (согласно патенту на изобретение РФ №2338816 от 20 ноября 2008 г.) выращен кристалл парателлурита:

- диаметр - 71 мм; высота 19 мм;

- направление роста - [110];

- скорость вращения - 13 об/мин;

- скорость вытягивания - 0,25 мм/ч;

- истинная вертикальная скорость роста - 0,63 мм/ч.

Процесс вытягивания кристалла-затравки диаметром d=71 мм, использованного далее для выращивания в тигле диаметром D=75 мм, представлен на фиг. 3.

Выращенный обычным способом Чохральского кристалл диаметром 71 мм, использованный далее в качестве затравки, представлен на фиг. 4.

б) Полученный кристалл диаметром 71 мм после охлаждения и отжига был помещен в камеру той же установки для выращивания, но с установленным тиглем диаметром не 100 мм, а 75 мм, для которого диаметр 75 мм является закритическим, где выращивался путем не вытягивания, а вдавливания в расплав.

Параметры процесса и кристалла:

- направление роста - [110];

- скорость вращения - 8 об/мин;

- скорость вдавливания (опускания штока с кристаллом вниз) - 0,048 мм/ч;

- истинная вертикальная скорость роста - 0,63 мм/ч;

- средняя плотность дислокаций - 5600 см-2.

Процесс вдавливания кристалла в расплав представлен на фиг. 5.

Выращенный предлагаемым способом кристалл парателлурита представлен на фиг. 6.

Применение способа позволило существенно снизить плотность дислокаций в монокристаллах парателлурита, применяемых в оптике, акустооптике, лазерной технике и ядерной физике (в качестве материала для детектирования актов двойного бета-распада). Представленный способ выращивания пригоден к внедрению в промышленное производство на любых установках для вытягивания способом Чохральского при получении монокристаллов веществ, у которых плотность твердой фазы больше плотности расплава.

Способ выращивания монокристаллов веществ, имеющих плотность, превышающую плотность их расплава, включающий предварительное вытягивание кристалла радиусом r способом Чохральского из неподвижного тигля радиусом R, таким, что где ρ - плотность кристалла, ρ - плотность расплава, отличающийся тем, что полученный кристалл после охлаждения, извлечения из печи и установки другого тигля с меньшим радиусом R, таким, что используется в качестве затравки при выращивании из этого тигля кристалла радиусом r путем его постоянного перемещения вниз.
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ВЕЩЕСТВ, ИМЕЮЩИХ ПЛОТНОСТЬ, ПРЕВЫШАЮЩУЮ ПЛОТНОСТЬ ИХ РАСПЛАВА
Источник поступления информации: Роспатент

Showing 41-50 of 65 items.
20.01.2018
№218.016.1bef

Способ химической очистки фильтров обратного осмоса растворами экологически безопасных комплексонов

Изобретение относится к мембранной технике и может быть использовано при процессах разделения, концентрирования и очистки компонентов сточных вод и технологических жидких смесей. Способ химической очистки фильтров обратного осмоса растворами экологически безопасных комплексонов включает в себя...
Тип: Изобретение
Номер охранного документа: 0002636712
Дата охранного документа: 27.11.2017
13.02.2018
№218.016.1f1b

Способ получения супрамолекулярного гидрогеля

Изобретение относится к cпособe получения супрамолекулярных гидрогелей, включающему смешение водного раствора L-цистеина с водным раствором ацетата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,0 до 6,0 мМ, а отношение молярных концентраций ацетата серебра к L-цистеину в...
Тип: Изобретение
Номер охранного документа: 0002641111
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.2168

Способ очистки поверхности расплава при выращивании монокристаллов германия

Изобретение относится к области выращивания монокристаллов германия из расплава. Сущность изобретения заключается в осуществлении извлечения шлаков (окисные пленки) с поверхности расплава, а также и со стенок тигля ниже уровня расплава германия в тигле. Это позволяет обеспечить выход...
Тип: Изобретение
Номер охранного документа: 0002641760
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.230e

Способ получения гидроксиапатита

Изобретение относится к получению гидроксиапатита Са(РO)(ОН), используемого при изготовлении биоактивных покрытий в стоматологии, травматологии и ортопедии. Для получения гидроксиапатита к водному раствору нитрата кальция добавляют при комнатной температуре 0,2 М раствор этилендиаминдиянтарной...
Тип: Изобретение
Номер охранного документа: 0002641919
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.34d5

Автономный солнечный опреснитель морской воды

Изобретение относится к опреснительным установкам. Автономный солнечный опреснитель морской воды содержит автономный источник электричества и последовательно соединенные концентратор 1 солнечной энергии, испаритель 5 воды, охладитель 11 водяного пара, конденсатный насос для вывода конденсата,...
Тип: Изобретение
Номер охранного документа: 0002646004
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.42fe

Способ комплексной дистанционной подготовки пользователя к экзамену с обучением решению модельных и теоретических задач

Изобретение относится к средствам дистанционного обучения, используемым при проведении удаленного обучения пользователя решению модельных и теоретических задач по естественнонаучным и инженерным дисциплинам и подготовке к сдаче вступительных аттестационных экзаменов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002649752
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4805

Способ биомониторинга аэрозольного загрязнения атмосферы металлами

Изобретение относится к области экологии и может быть использовано для биомониторинга аэрозольного загрязнения атмосферы металлами. Сущность: собирают талломы лишайников со стволов деревьев, произрастающих в антропогенно-трансформированной и фоновой (не загрязненной антропогенными выбросами)...
Тип: Изобретение
Номер охранного документа: 0002650739
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4f41

Способ измерения температуры локальных участков поверхности расплава в тигле при выращивании методом чохральского монокристаллов веществ с температурой плавления выше 650с

Изобретение относится к области температурных измерений и касается способа измерения температуры локальных участков поверхности расплава в тигле при выращивании методом Чохральского монокристаллов веществ с температурами плавления выше 650°C. Способ включает в себя фотографирование цифровым...
Тип: Изобретение
Номер охранного документа: 0002652640
Дата охранного документа: 28.04.2018
09.06.2018
№218.016.5d58

Способ оптической томографии прозрачных материалов

Изобретение относится к измерительной технике и области оптического приборостроения, а именно к неразрушающему контролю качества материалов, в частности к бесконтактным способам дефектоскопии прозрачных материалов. Сущность изобретения заключается в том, что в способе оптической томографии...
Тип: Изобретение
Номер охранного документа: 0002656408
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5d8c

Способ механохимического удаления накипных отложений

Изобретение относится к теплоэнергетике и может быть использовано для очистки от накипи внутренних поверхностей нагрева или теплообмена водогрейных и паровых котлов, нагревательных элементов и внутренних поверхностей чайников, систем охлаждения двигателей внутреннего сгорания. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002656334
Дата охранного документа: 05.06.2018
Showing 41-50 of 51 items.
20.01.2018
№218.016.1bef

Способ химической очистки фильтров обратного осмоса растворами экологически безопасных комплексонов

Изобретение относится к мембранной технике и может быть использовано при процессах разделения, концентрирования и очистки компонентов сточных вод и технологических жидких смесей. Способ химической очистки фильтров обратного осмоса растворами экологически безопасных комплексонов включает в себя...
Тип: Изобретение
Номер охранного документа: 0002636712
Дата охранного документа: 27.11.2017
13.02.2018
№218.016.1f1b

Способ получения супрамолекулярного гидрогеля

Изобретение относится к cпособe получения супрамолекулярных гидрогелей, включающему смешение водного раствора L-цистеина с водным раствором ацетата серебра так, чтобы концентрация L-цистеина в смеси составляла от 1,0 до 6,0 мМ, а отношение молярных концентраций ацетата серебра к L-цистеину в...
Тип: Изобретение
Номер охранного документа: 0002641111
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.2168

Способ очистки поверхности расплава при выращивании монокристаллов германия

Изобретение относится к области выращивания монокристаллов германия из расплава. Сущность изобретения заключается в осуществлении извлечения шлаков (окисные пленки) с поверхности расплава, а также и со стенок тигля ниже уровня расплава германия в тигле. Это позволяет обеспечить выход...
Тип: Изобретение
Номер охранного документа: 0002641760
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.230e

Способ получения гидроксиапатита

Изобретение относится к получению гидроксиапатита Са(РO)(ОН), используемого при изготовлении биоактивных покрытий в стоматологии, травматологии и ортопедии. Для получения гидроксиапатита к водному раствору нитрата кальция добавляют при комнатной температуре 0,2 М раствор этилендиаминдиянтарной...
Тип: Изобретение
Номер охранного документа: 0002641919
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.34d5

Автономный солнечный опреснитель морской воды

Изобретение относится к опреснительным установкам. Автономный солнечный опреснитель морской воды содержит автономный источник электричества и последовательно соединенные концентратор 1 солнечной энергии, испаритель 5 воды, охладитель 11 водяного пара, конденсатный насос для вывода конденсата,...
Тип: Изобретение
Номер охранного документа: 0002646004
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.4f41

Способ измерения температуры локальных участков поверхности расплава в тигле при выращивании методом чохральского монокристаллов веществ с температурой плавления выше 650с

Изобретение относится к области температурных измерений и касается способа измерения температуры локальных участков поверхности расплава в тигле при выращивании методом Чохральского монокристаллов веществ с температурами плавления выше 650°C. Способ включает в себя фотографирование цифровым...
Тип: Изобретение
Номер охранного документа: 0002652640
Дата охранного документа: 28.04.2018
09.06.2018
№218.016.5d58

Способ оптической томографии прозрачных материалов

Изобретение относится к измерительной технике и области оптического приборостроения, а именно к неразрушающему контролю качества материалов, в частности к бесконтактным способам дефектоскопии прозрачных материалов. Сущность изобретения заключается в том, что в способе оптической томографии...
Тип: Изобретение
Номер охранного документа: 0002656408
Дата охранного документа: 05.06.2018
12.07.2018
№218.016.70b4

Способ получения слитка германия, очищенного от примесей

Изобретение относится к области цветной металлургии, в частности, к получению полупроводниковых материалов, и может быть использовано в производстве сырьевого германия, применяемого для выращивания монокристаллов для оптического применения. Слиток германия, очищенного от примесей, получают...
Тип: Изобретение
Номер охранного документа: 0002660788
Дата охранного документа: 09.07.2018
19.07.2019
№219.017.b666

Способ определения степени однородности одноосных кристаллов

Изобретение относится к области оптики, а именно к способам определения оптической однородности и выявления структурных дефектов оптических кристаллов, и может быть использовано для контроля качества одноосных кристаллов. Целью изобретения является разработка способа определения степени...
Тип: Изобретение
Номер охранного документа: 0002694790
Дата охранного документа: 16.07.2019
19.12.2019
№219.017.eeeb

Детектор лазерного излучения ик-диапазона

Изобретение относится к области оптико-электронного приборостроения и касается детектора лазерного излучения в ИК-диапазоне. Детектор содержит размещенный в корпусе и закреплённый в кристаллодержателе приемный элемент на основе полупроводникового монокристалла р-типа, электрически соединённые...
Тип: Изобретение
Номер охранного документа: 0002709413
Дата охранного документа: 17.12.2019
+ добавить свой РИД