×
13.01.2017
217.015.76ae

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и авиастроения, где могут быть применены магниевые сплавы в качестве легкого конструкционного материала для изготовления кронштейнов, несущих деталей внутреннего набора, таких как детали кресел, пульта управления, системы управления. Способ обработки магниевых сплавов включает нагрев литой заготовки, двухступенчатую деформацию и охлаждение на воздухе, при этом первую ступень деформации проводят при температуре 370-450°C в течение времени, необходимого для получения деформированной структуры, с последующим охлаждением заготовки на воздухе до комнатной температуры, причем перед нагревом литой заготовки ее подвергают двухступенчатой гомогенизации сначала при температуре 340-360°C в течение 6 ч и далее при температуре 440-470°C в течение 8 ч, а вторую ступень деформации проводят при температуре 350-450°C со скоростью деформации 0,01-0,7 м/с и последующем охлаждении на воздухе со скоростью 5-30°/с. Техническим результатом изобретения является повышение значения предела текучести при сжатии при сохранении малой анизотропии прочностных свойств и хорошей коррозионной стойкости. 1 табл., 9 пр.

Изобретение относится к области машиностроения и авиастроения, где могут быть применены магниевые сплав, легированные редкоземельными элементами (РЗЭ), в качестве легкого конструкционного материала для изготовления кронштейнов, несущих деталей внутреннего набора: деталей кресел, деталей пульта управления, деталей системы управления и т.д.

Известен способ обработки магниевых сплавов, включающий нагрев, ступенчатую деформацию и охлаждение, в котором нагрев проводят до 280-360°C, деформацию проводят по меньшей мере с одним дополнительным переходом, при этом все переходы деформации проводят с одного нагрева непрерывно друг за другом со скоростью (2·10-1-6·10-2) с-1 и суммарной степенью деформации 88-93%, а охлаждение осуществляют на воздухе (см. Патент РФ №2148104, опубл. 24.07.2000 г.).

К недостаткам этого способа следует отнести:

- недостаточный уровень значений предела текучести при сжатии; что служит препятствием к изготовлению из них изделий, работающих в условиях действия нагрузки в поперечном направлении по отношению к волокну,

- недостаточный уровень прочности в интервале температур (-70÷+300)°C, что ограничивает возможности применения сплава

- длительность процесса изготовления полуфабриката, поскольку скорости деформации второй ступени крайне малы.

Известен способ обработки, включающий гомогенизацию и последующий процесс обработки, пригодный для слитков магниевых сплавов. Метод включает следующие ступени: (1) анализ компонентов магниевого сплава и количества фаз с низкой температурой плавления; (2) выполнение последующих ступеней обработки в соответствии с количеством низкоплавящихся фаз: проведение нагрева при температуре, которая на 10-20°C ниже, чем первоначальная температура наиболее низкотемпературной критической точки фазового превращения, проведение деформации, включающей один вид или сочетание факультативно 2 видов деформации: штамповки (ковки), прессования и прокатки; проведение длительной гомогенизации сплава после деформации; (3) проведение соответствующей термообработки сплава, включающей следующие под ступени: прямое старение, постоянное деформирование и одновременно - старение, повышение температуры до уровня на 10-20°C ниже следующей критической точки низкотемпературного фазового превращения; деформирование, проведение гомогенизации, повторение всего цикла, пока не будет пройдена последняя критическая точка фазового превращения; прямое деформирование и старение без охлаждения после гомогенизации, что является заключительной стадией обработки (см. Заявка CN 103805924 (A), опубл. 21.05.2014 г.).

К недостаткам этого способа следует отнести:

- сложную и дорогостоящую технологию, включающую большое число циклов различных режимов термообработки и деформации;

- отсутствие конкретных режимов, что позволило бы повторить предложенный метод обработки на магниевом сплаве;

- отсутствие результатов испытаний механических, коррозионных и других свойств, подтверждающих целесообразность применения данного способа;

- большое число циклов нагревов под термообработку и деформацию вызывает:

- снижение прочностных свойств магниевых сплавов;

- ухудшение коррозионной стойкости сплавов за счет дополнительного окисления поверхностных слоев металла при проведении многочисленных нагревов в воздушной атмосфере.

Известен способ термомеханической обработки сплавов на основе магния, включающий равноканальное угловое прессование (РКУП) при температуре 250-320°C, отличающийся тем, что перед РКУП проводят гомогенизацию сплава при температуре 415-520°C в течение 4-24 ч с последующей экструзией при температуре 300-450°C со степенью вытяжки 7-18, а РКУП осуществляют с истинной степенью деформации 6-8 (см. Патент РФ №2351686, опубл. 10.04.2009 г.).

К недостаткам этого способа следует отнести:

- длительный технологический цикл обработки магниевого сплава, в результате которого достигнуты невысокие значения условного предела текучести σ0,2=180-182 МПа и соответствующие значения относительного удлинения δ=8-12%;

- полученный уровень предела текучести (в том числе, и при сжатии) является недостаточным;

- суммарное длительное температурное воздействие может существенно снизить коррозионные свойства магниевых сплавов.

Наиболее близким аналогом, взятым за прототип, является способ обработки магниевых сплавов, включающий нагрев литой заготовки, двухступенчатую деформацию и охлаждение на воздухе, в котором вторую ступень деформации проводят в изотермических условиях при температуре на (50-100)°C ниже температуры первой ступени со скоростью 4·10-2-5·10-1 с-1 и с суммарной степенью деформации 65-85%, а между первой и второй ступенями деформации проводят термическую обработку при температуре 180-300°C в течение 1-12 часов (см. Патент РФ №2376397, опубл. 20.12.2009 г.).

Основными недостатками прототипа являются:

- опасность пережога ввиду отсутствия операции гомогенизации литых заготовок;

- недостаточно высокий уровень предела текучести при сжатии, что может ограничить конструктивное применение полуфабрикатов, изготовленных по данной технологии;

- длительность процесса изготовления деформированного полуфабриката, поскольку скорости деформации второй ступени крайне малы; при этом возможно некоторое разупрочнение ввиду прохождения в этот период процессов динамической рекристаллизации.

Технической задачей изобретения является разработка способа, позволяющего получить высокий уровень прочностных свойств. Техническим результатом настоящего изобретения является повышение значения предела текучести при сжатии при сохранении малой анизотропии прочностных свойств и хорошей коррозионной стойкости.

Поставленный технический результат достигается тем, что предложен способ обработки магниевых сплавов, включающий в себя нагрев заготовки, двухступенчатую деформацию и охлаждение на воздухе, при этом первую ступень деформации проводят при температуре (370÷450)°C в течение времени, необходимого для получения деформированной структуры с последующим охлаждением заготовки на воздухе до комнатной температуры, отличающийся тем, что перед этапом нагрева литой заготовки ее подвергают двухступенчатой гомогенизации при температуре (340÷360)°C в течение 6 ч и далее при температуре (440÷470)°C в течение 8 ч, а вторую ступень деформации проводят при температуре (350÷450)°C со скоростью деформации заготовки 0,01-0,7 м/с и последующем ее охлаждении на воздухе со скоростью 5-30°/с.

Магниевые сплавы, как правило, имеют сложный фазовый состав. Оптимальный режим гомогенизации должен гарантировать снятие внутренних литейных напряжений в слитке, достижение максимально возможного растворения неравновесных первичных фаз, облагораживание формы крупнокристаллических интерметаллидов. К основным опасным явлениям на металлургических предприятиях при проведении гомогенизации слитков магниевых сплавов относят явление пережога, приводящее практически к 100-% браку отливок.

Предлагаемый авторами способ обработки предусматривает проведение гомогенизации литых заготовок по двухступенчатому режиму: (340÷360)°C в течение 6 ч+(440÷470)°C в течение 8 ч. Авторами установлено, что именно предложенный режим обеспечивает получение максимального эффекта гомогенизации магниевых сплавов и полностью предохраняет от явления пережога. Применяемые серийные сплавы относятся к основным системам легирования: Mg-Al-Zn-Mn; Mg-Zn-Zr; Mg-Zn-Zr-РЗЭ (редкоземельный элемент). Авторами изобретения доказано, что, несмотря на наличие других легирующих компонентов, в магниевых сплавах всегда присутствует первичная фаза MgZn, входящая в состав легкоплавкой эвтектики (α+MgZn).

Технологические параметры 1-й ступени гомогенизации способствуют максимальному растворению этой фазы, а параметры 2-й ступени гомогенизации выравнивает химический состав сплава в пределах зерна и облагораживают структуру. Предлагаемый двухступенчатый режим гомогенизации наиболее эффективно подготавливает структуру магниевых сплавов к последующей деформации и позволяет исключить возможность пережога.

Установлено, что проведение второй ступени деформации при температуре (350÷450)°C, со скоростью деформации заготовок 0,01-0,7 м/с и последующем их охлаждении на воздухе со скоростью (5-30)°/с, способствует частичному прохождению динамической рекристаллизации обработки. Более высокая температура второй ступени деформации и усилия деформации инициируют повышение диффузионной активности атомов легирующих элементов, в результате чего на границах зерен происходит выделение высокодисперсных частиц интерметаллидов. В совокупности с полученным наследственным эффектом гомогенизации это гарантирует формирование мелкой равноосной структуры в объеме металла независимо от направления оси деформации. Предел текучести при сжатии повышается, поскольку увеличивается вклад границ зерен в механизм деформации при сжатии. В итоге уровень механических свойств по направлениям выравнивается, анизотропия снижается. Отсутствие крупных интерметаллических включений и достаточно однородный по химическому составу матричный α-твердый раствор приводят к получению повышенной общей коррозионной стойкости деформированных полуфабрикатов.

Примеры осуществления

Пример 1

Литые заготовки из магниевых сплавов МА14, ВМД10, МА5 подвергали гомогенизации по режиму: 340°C в течение 6 ч и далее при температуре 440°C в течение 8 ч, затем проводили первую ступень деформации при 370°C в течение времени, необходимого для получения деформированной структуры, в этом убеждались по результатам микроанализа структуры заготовок.

Вторую ступень деформации проводили при температуре 350°C со скоростью деформации заготовки 0,001 м/с и в последующем ее охлаждали на воздухе до комнатной температуры со скоростью 5°/с (табл.).

Примеры 2-7 осуществляли аналогично примеру 1, т.е. в той же последовательности, но используя в каждом примере соответствующие параметры (см. табл.).

Примеры 8, 9. Способ, известный из прототипа

Пример 8

Литые заготовки из магниевого сплава МА22 нагревали до температуры первой ступени деформации - 410°C, проводили 4 обжатия за один нагрев, по результатам микроанализа определяли достижение полностью деформированной структуры в заготовках. Затем проводили термическую обработку (т/о) при температуре 240°C в течение 6 часов. После этого заготовки нагревали до температуры 335°C (на 75°C ниже, чем на 1-й стадии деформации) и проводили вторую ступень деформации (объемную штамповку) в изотермических условиях со скоростью 2·10-1 с-1 и с суммарной степенью деформации 75%

Пример 9

Литые заготовки из магниевого сплава МА14 нагревали до температуры первой ступени деформации - 450°C, проводили 5 обжатий за один нагрев, по результатам микроанализа определяли достижение полностью деформированной структуры в заготовках. Затем проводили термическую обработку (т/о) при температуре 300°C в течение 12 часов. После этого заготовки нагревали до температуры 350°C (на 100°C ниже, чем на 1-й стадии деформации) и проводили вторую ступень деформации (объемную штамповку) в изотермических условиях со скоростью 5·10-1 с-1 и с суммарной степенью деформации 85%.

В таблице приведены свойства поковок, изготовленных по предлагаемому способу из серийных высокопрочных магниевых сплавов МА14 (система Mg-Zn-Zr), МА22 (система Mg-Zn-Zr-РЗЭ) и сплава МА5 (система Mg-Al-Zn-Mn), а также изготовленных по способу-прототипу поковок из сплавов МА22 и МА14.

Из анализа представленных в таблице результатов следует, что предлагаемый способ обработки магниевых сплавов по сравнению со способом, известным из прототипа, имеет следующие преимущества:

- предел текучести при сжатии для сплава МА14 повышается в долевом направлении на 14-15%, в поперечном направлении - на 32%;

- для сплава МА22 при повышении общего уровня значений предела текучести при сжатии на 5-10 МПа коэффициент анизотропии снижается до 2-2,5% (с 5,5%);

- скорость коррозии для сплава МА22 снижается на 25-27%,

- для сплава МА14 скорость коррозии уменьшается на 8-9%.

- предел прочности деформированных полуфабрикатов из рассмотренных магниевых сплавов остается на достигнутом высоком уровне при малой анизотропии: 2-5,5% для сплава МА22, 11-12% для сплава МА14; 22% для сплава МА5.

Изготавливаемые по предлагаемому способу обработки деформируемые полуфабрикаты высокопрочных магниевых сплавов разных систем легирования отличаются повышенными прочностными (пределом прочности при растяжении, пределом текучести при сжатии) при сохранении их малой анизотропии, хорошими коррозионными свойствами, что способствует повышению надежности конкретных изделий из этих полуфабрикатов, увеличению ресурса, расширяет возможность их конструктивного применения.

σ

Способ обработки магниевых сплавов, включающий нагрев литой заготовки, двухступенчатую деформацию и охлаждение на воздухе, при этом первую ступень деформации проводят при температуре 370-450°C в течение времени, необходимого для получения деформированной структуры, с последующим охлаждением заготовки на воздухе до комнатной температуры, отличающийся тем, что перед нагревом литой заготовки ее подвергают двухступенчатой гомогенизации сначала при температуре 340-360°C в течение 6 ч и далее при температуре 440-470°C в течение 8 ч, а вторую ступень деформации проводят при температуре 350-450°C со скоростью деформации 0,01-0,7 м/с и последующем охлаждении на воздухе со скоростью 5-30°/с.
Источник поступления информации: Роспатент

Showing 211-220 of 368 items.
29.12.2017
№217.015.f12a

Ингибирующий состав

Изобретение относится к области пленкообразующих ингибирующих составов и может быть использовано для дополнительной защиты от коррозии элементов конструкций, изготовленных из алюминиевых сплавов. Ингибирующий состав содержит компоненты при следующем соотношении, мас.ч.: полисульфидный олигомер...
Тип: Изобретение
Номер охранного документа: 0002638861
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f36e

Композиционный звукопоглощающий материал и способ его изготовления

Изобретение относится к области звукопоглощающих полимерных композиционных материалов. Способ изготовления звукопоглощающего материала включает приготовление вспененной полиуретановой композиции посредством смешивания форполимера и полиизоцианатных групп, формирование тыльной части...
Тип: Изобретение
Номер охранного документа: 0002637958
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f502

Порошковая полимерная композиция и способ её изготовления

Группа изобретений относится к порошковым термопластичным материалам на основе полиамидов, которые могут быть использованы в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления, порошкового связующего и компонента порошковых покрытий....
Тип: Изобретение
Номер охранного документа: 0002637962
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f725

Способ производства высокопрочной мартенситностареющей стали

Изобретение относится к области металлургии, конкретно к производству высокопрочных мартенситностареющих сталей, микролегированных редкоземельными металлами (РЗМ), и может использоваться для изготовления высоконагруженных деталей большого сечения, силовых деталей, работающих от -70 до 400°C в...
Тип: Изобретение
Номер охранного документа: 0002639190
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fa99

Износостойкий сплав на кобальтовой основе

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, и может быть использовано для ремонта и упрочнения рабочих лопаток турбин авиационных газотурбинных двигателей с рабочей температурой не менее 1000°С. Сплав на основе кобальта содержит, мас.%: хром 22-27,...
Тип: Изобретение
Номер охранного документа: 0002640118
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fafb

Способ повышения плотности сложнопрофильных изделий из интерметаллидных сплавов на основе никеля, полученных аддитивными технологиями

Изобретение относится к области металлургии, а именно к способам обработки деталей из интерметаллидных сплавов, полученных аддитивными технологиями, и может быть использовано для повышения плотности сложнопрофильных деталей газотурбинных двигателей. Способ обработки изделия из интерметаллидного...
Тип: Изобретение
Номер охранного документа: 0002640117
Дата охранного документа: 26.12.2017
19.01.2018
№218.015.ff61

Высокожаропрочный литой сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl. Сплав на основе интерметаллида NiAl содержит, мас.%: алюминий 8,2-8,8, хром 4,5-5,5, вольфрам 4,1-4,6, молибден 4,5-5,5, титан 0,8-1,2, углерод 0,12-0,18, кобальт 3,5-4,5, по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002629413
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.01b7

Прибор контроля фазового состава стали

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к устройствам, предназначенным для автоматизированного экспресс-контроля состава сплавов на основе железа, а именно содержания ферритной фазы в различных марках стали при литье и, прежде всего, в стальных пробах и...
Тип: Изобретение
Номер охранного документа: 0002629920
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.046c

Гидрофобный пористый керамический материал и способ его получения

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием. Описан способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью, характеризующейся соотношением r>1,...
Тип: Изобретение
Номер охранного документа: 0002630523
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.100d

Гранулируемый сплав на основе хрома и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к гранулируемым интерметаллидным сплавам, и может быть использовано для изготовления инструментов для высокотемпературной изотермической штамповки. Предложен сплав на основе хрома, содержащий, мас.%: 20,0-40,0 молибдена, 3,0-15,0 железа,...
Тип: Изобретение
Номер охранного документа: 0002633680
Дата охранного документа: 16.10.2017
Showing 211-220 of 334 items.
29.12.2017
№217.015.f12a

Ингибирующий состав

Изобретение относится к области пленкообразующих ингибирующих составов и может быть использовано для дополнительной защиты от коррозии элементов конструкций, изготовленных из алюминиевых сплавов. Ингибирующий состав содержит компоненты при следующем соотношении, мас.ч.: полисульфидный олигомер...
Тип: Изобретение
Номер охранного документа: 0002638861
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f36e

Композиционный звукопоглощающий материал и способ его изготовления

Изобретение относится к области звукопоглощающих полимерных композиционных материалов. Способ изготовления звукопоглощающего материала включает приготовление вспененной полиуретановой композиции посредством смешивания форполимера и полиизоцианатных групп, формирование тыльной части...
Тип: Изобретение
Номер охранного документа: 0002637958
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f502

Порошковая полимерная композиция и способ её изготовления

Группа изобретений относится к порошковым термопластичным материалам на основе полиамидов, которые могут быть использованы в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления, порошкового связующего и компонента порошковых покрытий....
Тип: Изобретение
Номер охранного документа: 0002637962
Дата охранного документа: 08.12.2017
29.12.2017
№217.015.f725

Способ производства высокопрочной мартенситностареющей стали

Изобретение относится к области металлургии, конкретно к производству высокопрочных мартенситностареющих сталей, микролегированных редкоземельными металлами (РЗМ), и может использоваться для изготовления высоконагруженных деталей большого сечения, силовых деталей, работающих от -70 до 400°C в...
Тип: Изобретение
Номер охранного документа: 0002639190
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fa99

Износостойкий сплав на кобальтовой основе

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, и может быть использовано для ремонта и упрочнения рабочих лопаток турбин авиационных газотурбинных двигателей с рабочей температурой не менее 1000°С. Сплав на основе кобальта содержит, мас.%: хром 22-27,...
Тип: Изобретение
Номер охранного документа: 0002640118
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fafb

Способ повышения плотности сложнопрофильных изделий из интерметаллидных сплавов на основе никеля, полученных аддитивными технологиями

Изобретение относится к области металлургии, а именно к способам обработки деталей из интерметаллидных сплавов, полученных аддитивными технологиями, и может быть использовано для повышения плотности сложнопрофильных деталей газотурбинных двигателей. Способ обработки изделия из интерметаллидного...
Тип: Изобретение
Номер охранного документа: 0002640117
Дата охранного документа: 26.12.2017
19.01.2018
№218.015.ff61

Высокожаропрочный литой сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl. Сплав на основе интерметаллида NiAl содержит, мас.%: алюминий 8,2-8,8, хром 4,5-5,5, вольфрам 4,1-4,6, молибден 4,5-5,5, титан 0,8-1,2, углерод 0,12-0,18, кобальт 3,5-4,5, по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002629413
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.01b7

Прибор контроля фазового состава стали

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к устройствам, предназначенным для автоматизированного экспресс-контроля состава сплавов на основе железа, а именно содержания ферритной фазы в различных марках стали при литье и, прежде всего, в стальных пробах и...
Тип: Изобретение
Номер охранного документа: 0002629920
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.046c

Гидрофобный пористый керамический материал и способ его получения

Изобретение относится к области получения гидрофобного высокотемпературного пористого керамического материала с полимерным покрытием. Описан способ получения гидрофобного покрытия, при осуществлении которого на поверхность подложки с шероховатой поверхностью, характеризующейся соотношением r>1,...
Тип: Изобретение
Номер охранного документа: 0002630523
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.100d

Гранулируемый сплав на основе хрома и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к гранулируемым интерметаллидным сплавам, и может быть использовано для изготовления инструментов для высокотемпературной изотермической штамповки. Предложен сплав на основе хрома, содержащий, мас.%: 20,0-40,0 молибдена, 3,0-15,0 железа,...
Тип: Изобретение
Номер охранного документа: 0002633680
Дата охранного документа: 16.10.2017
+ добавить свой РИД