×
13.01.2017
217.015.75f4

Результат интеллектуальной деятельности: ТЕПЛООБМЕННЫЙ РЕАКТОР ДЛЯ ПРОИЗВОДСТВА ВОДОРОДА С ПОМОЩЬЮ ВСТРОЕННОГО ПУЧКА ПАРОГЕНЕРАТОРА

Вид РИД

Изобретение

№ охранного документа
0002598435
Дата охранного документа
27.09.2016
Аннотация: Изобретение предназначено для осуществления реакций парового риформинга и может быть использовано в химической промышленности. Теплообменный реактор содержит множество байонетных труб (4), подвешенных к верхнему своду (2), простирающихся до уровня нижнего дна (3) и заключенных в кожух (1), содержащий впускной (Е) и выпускной (S) патрубки для дымовых газов. Теплообменный реактор содержит пучок труб парогенератора, образованный множеством вертикальных труб (5), подвешенных к верхнему своду (2) и заключенных в периферийное пространство между внутренней перегородкой (Bi) и вертикальной стенкой кожуха (1). Внутренняя перегородка (Bi) содержит отверстие (Oi) для прохода дымовых газов из середины реактора к периферийному пространству. Вертикальные трубы (5) питаются водой из нижнего распределителя (9). Пароводяная смесь, выходящая из вертикальных труб (5), собирается в верхнем коллекторе (7), расположенном над верхним сводом (2). Нижняя линия (14) связывает жидкую фазу сепараторного резервуара (6) с верхним коллектором (7). Верхняя линия (13) связывает верхний коллектор (7) с паровой фазой сепараторного резервуара (6). Паровой риформинг осуществляют при скорости дымовых газов в периферийном пространстве от 20 м/сек до 80 м/сек. Дымовые газы поступают в теплообменный реактор при температуре, близкой к 1200°С, и выходят из него при температуре, меньшей 400°С. Изобретение позволяет повысить тепловую эффективность теплообменного реактора. 3 н. и 4 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к области теплообменных реакторов, предназначенных для осуществления эндотермических реакций, таких как паровой риформинг нефтяных фракций или спиртов для производства синтетического газа.

Этот тип реактора известен из уровня техники, и его описание можно найти в патентах US4919844, US4690690, WO2003031050, WO03/035242.

Схематически принцип работы такого теплообменного реактора заключается в обеспечении циркуляции горячих дымовых газов, которые на входе в реактор могут достигать 1200°С, вокруг системы труб, внутри которых проходит эндотермическая реакция или совокупность, по существу, эндотермических реакций. Тепловая эффективность такого теплообменного реактора обеспечивается, в основном, выходной температурой дымовых газов.

Целью настоящего изобретения является повышение тепловой эффективности такого теплообменного реактора путем понижения выходной температуры дымовых газов, что обеспечивается встраиванием внутрь самого упомянутого теплообменного реактора должным образом размещенного пучка труб для генерирования водяного пара.

Ниже в тексте приведен пример реактора для парового риформинга природного газа в качестве примера эндотермических реакций, осуществляемых в теплообменном реакторе, объекте настоящего изобретения. Но, в общем, настоящее изобретение касается всех эндотермических реакций, в которых подача тепла осуществляется дымовыми газами.

Реакция при паровом риформинге происходит при очень высоких температурах, обычно 900°С, и давлении, обычно от 20 до 30 бар. Отсюда вытекает, что реакция протекает в системе труб, что является единственным экономически осуществимым решением ввиду механической стойкости материалов. Такие каталитические реакторы образованы множеством труб, обычно порядка 200-400 труб, для систем, производящих 100000 Ни3/ч водорода.

Эти трубы нагреваются горячими дымовыми газами, образующимися на входе теплообменного реактора, например из внешней камеры сгорания, либо от турбины, генерирующей горячий газ, после которой установлена внешняя камера сгорания, как это описано в случае теплообменного реактора, описанного в патенте FR 2852358.

Трубы могут быть байонетного типа и иметь входы реактивов и выходы продукта на одном и том же конце. Байонетные трубы подвешены к верхнему своду теплообменного реактора, что облегчает контроль термических расширений.

Примером теплообменного реактора большого размера является реактор "HyGenSys", описанный в патенте FR 2918904. Этот теплообменный реактор содержит большое количество (превышающее 50) труб, заключенных в паровой камере большого диаметра (в несколько метров) и с повышенной разностью давлений между стороной процесса (или со стороны труб) и со стороны дымовых газов (или со стороны паровой камеры). Известно также техническое решение для увеличения коэффициентов обмена между дымовыми газами и байонетными трубами, внутри которых происходят эндотермические реакции, вследствие повышенных скоростей циркуляции дымовых газов, в частности при их пропускании вокруг байонетных труб в трубах, которые называют дымовыми трубами или просто дымоходами, при этом каждый дымоход окружает байонетную трубу.

В известном уровне техники (патент FR 2918904) эти дымоходы закреплены и удерживаются горизонтальной пластиной, прикрепленной к стенкам паровой камеры теплообменного реактора. Последняя может быть классически усилена снизу или сверху балками для минимизации ее толщины.

Горячие дымовые газы передают часть своей энергии байонетным трубам, но на выходе теплообменного реактора остаются горячими (от 550°С до 700°С, обычно от 600°С до 650°С). Тепловая отдача не является, таким образом, очень высокой, и одной из целей настоящего изобретения является повышение тепловой отдачи такого теплообменного реактора путем снижения выходной температуры дымовых газов.

ИССЛЕДОВАНИЕ ИЗВЕСТНОГО УРОВНЯ ТЕХНИКИ

В процессе использования теплообменного реактора с дымовыми газами под давлением (обычно от 2 до 5 относительных бар) весьма трудно осуществить выходные соединения дымовых газов, когда последние имеют температуру, превышающую 550°С. В соответствии с известным уровнем техники следует термически изолировать внутреннее пространство выпускного патрубка, чтобы фланец имел достаточно малую температуру, однако этот способ воплощения требует еще более значительного диаметра патрубка, который может привести к механическим проблемам с кожухом теплообменного реактора, который сам должен оставаться при достаточно низкой температуре (обычно меньшей 300°С), для того чтобы оставаться экономически осуществимым.

Кроме того, в решении по известному уровню техники дымовые газы, выходящие через верх теплообменного реактора, должны быть собраны и снова опущены на уровень пола для питания выходного оборудования, обычно расположенного на уровне пола (дожигающая камера, или расширитель, или парогенератор). Таким образом, эта горячая линия для повторного опускания дымовых газов также должна быть изнутри изолирована, что делает ее дорогостоящей и объемной. Кроме того, она является источником тепловых потерь, которые уменьшают общую эффективность системы.

Настоящее изобретение позволяет исключить эту линию повторного опускания дымовых газов, увеличивая тепловую отдачу обменного реактора.

ОБЩЕЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 схематично представляет вид теплообменного реактора по изобретению, на котором изображен контур парогенератора, содержащий подающий распределитель (9), пучок труб (5) парогенератора, верхний коллектор (7) и резервуар сепаратора (6).

Фиг.2 изображает вид в разрезе теплообменного реактора, представляющий центральное пространство, предназначенное для байонетных труб по способу, и периферийное пространство, содержащее трубы парогенератора.

ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение представляет собой теплообменный реактор 1', предназначенный для осуществления эндотермических реакций и содержащий множество байонетных труб, подвешенных к верхнему своду (2) упомянутого реактора и простирающихся до уровня нижнего дна (3) упомянутого реактора, при этом байонетные трубы (4) используются для осуществления одной или нескольких эндотермических реакций и размещены в паровой камере, заключенной в кожух (1), содержащей входной патрубок (Е) для горячих дымовых газов, передающих тепло байонетным трубам (4) и, по меньшей мере, один выходной патрубок (S) для удаления дымовых газов, охлажденных после осуществления теплообмена, при этом теплообменный реактор содержит, кроме того, парагенераторный пучок, состоящий из множества, по существу, вертикальных труб (5) для генерирования пара, также подвешенных к верхнему своду (2) теплообменного реактора и проходящих до уровня нижнего дна (3), заключенных в периферийном пространстве (8) между внутренней перегородкой (Bi), по существу, параллельной вертикальной стенке кожуха (1), и вертикальной стенкой (1). Упомянутая внутренняя перегородка (Bi) содержит, по меньшей мере, одно отверстие (Oi) для прохода дымовых газов (10) из середины реактора к периферийному пространству. Вертикальные трубы (5), служащие для генерирования пара, питаются водой из нижнего распределителя (9), расположенного в нижней части периферийного пространства, а парожидкостная смесь, выходящая из вертикальных труб (5), собирается в верхнем коллекторе (7) размещенном над верхним сводом (2) теплообменного реактора, по существу, на том же уровне, что и резервуар сепаратора (6).

В соответствии с первым вариантом теплообменного реактора по изобретению каждая парагенераторная труба (5) окружена трубой, по которой проходят дымовые газы вокруг парогенераторной трубы (5).

В соответствии со вторым вариантом теплообменного реактора по изобретению система направляющих листов, прикрепленных к стенкам периферийного пространства, позволяет дымовым газам (10) циркулировать, по существу, перпендикулярно по отношению к вертикальным трубам (5).

Предпочтительным образом отверстие (Oi), обеспечивающее проход дымовых газов из середины реактора к периферийному пространству, расположено в верхней части внутренней перегородки Bi.

В теплообменном реакторе по настоящему изобретению правильно рассчитанный объем периферийного пространства может составлять меньше 10% и предпочтительно меньше 5% общего объема теплообменного реактора.

Теплообменный реактор по изобретению может быть, в частности, использован для осуществления способа парового риформинга нефтяных фракций, или природного газа, или спирта.

В этом случае скорость дымовых газов в периферийном пространстве обычно составляет от 20 м/сек до 80 м/сек и предпочтительно составляет от 30 м/сек до 60 м/сек.

Оставаясь в рамках использования теплообменного реактора по настоящему изобретению для осуществления способа парового риформинга нефтяных фракции, или газа, или спирта, дымовые газы поступают в теплообменный реактор при температуре, близкой к 1200°С, и выходят из упомянутого теплообменного реактора при температуре, предпочтительно меньшей 400°С.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение касается теплообменного реактора с энергетической отдачей, повышенной за счет размещения парагенерирующего пучка полностью встроенным в упомянутый реактор, то есть размещенным в периферийном пространстве относительно середины реактора, занятой пучком байонетных труб, что позволяет лучше извлекать тепло из дымовых газов.

Решение, объект изобретения, заключается в охлаждении дымовых газов после их первого теплообмена с байонетными трубами (4), что позволяет осуществить химические реакции способа путем генерирования пара перед выходом упомянутых газов из теплообменного реактора (1') в пространство, расположенное по периферии теплообменного реактора.

Для этого вертикальные парогенераторные трубы (5) расположены по периферии теплообменного реактора (1') внутри периферийного пространства, ограниченного, с одной стороны, по существу, вертикальной внутренней перегородкой (Bi), простирающейся от нижнего дна (3) до верхнего свода (2), и, с другой стороны, вертикальной стенкой кожуха (1) теплообменного реактора (1').

Эти вертикальные парогенераторные трубы (5) подвешены к верхнему своду (2) реактора с возможностью свободного расширения вниз.

Вертикальные трубы (5) питаются водой в жидком состоянии из парового резервуара (6), размещенного предпочтительно на высоте, превышающей высоту верхнего уровня теплообменного реактора (1'), с помощью нижнего кольцевого распределителя (9). Этот нижний распределитель (9) питается водой из резервуара-сепаратора (6) с помощью, по существу, вертикального трубопровода (11) для воды, который также расположен внутри периферийного пространства.

В парогенераторных трубах (5) вода частично испаряется обычно от 5% до 100% парообразования посредством теплообмена с дымовыми газами, которые опускаются в периферийное пространство (8) теплообменного реактора (1') из отверстия (Oi) до выходного патрубка (S).

Парогенераторные трубы (5) соединены в верхней части с верхним коллектором (7), расположенным снаружи реактора и обеспечивающим сбор пара или пароводяной смеси перед подачей в сепараторный резервуар (6).

Дымовые газы (10) охлаждаются, таким образом, до температуры ниже 400°С, предпочтительно от 300°С до 350°С, что позволяет выходить им из теплообменного реактора (1') через, по меньшей мере, один фланец (S), выполненный из стандартного металла, например, типа нержавеющей стали 316. Этот фланец (S) (или эти фланцы (S)) предпочтительно расположен в нижней части теплообменного реактора.

Жаропрочный материал (R) расположен по нижнему дну (3), вдоль стенки перегородки Bi со стороны, ориентированной к трубам осуществления процесса, и вдоль вертикальной стенки кожуха (1).

Образованное таким образом периферийное пространство для прохода дымовых газов (10) позволяет минимизировать тепловые потери. Кроме того, более низкая температура дымовых газов вблизи кожуха (1) позволяет минимизировать толщину жаропрочного материала (R), расположенного вдоль вертикальной стенки кожуха (1).

Парогенераторные трубы могут быть снабжены внешними ребрами для увеличения коэффициента теплообмена с дымовыми газами.

Нижний кольцевой распределитель (9) питается по линии (11) водой в жидком состоянии при температуре начала кипения, выходящей из парового резервуара (6), либо из термосифона (разность плотности между водой в жидком состоянии и водой, частично испаренной), либо из насоса, в частности, если паровой резервуар расположен недостаточно высоко.

Нижняя линия (14) связывает жидкую фазу сепараторного резервуара (6) с верхним коллектором (7).

Верхняя линия (13) связывает верхний коллектор (7) с паровой фазой сепараторного резервуара (6).

Дымовые газы, выходящие из входного патрубка (Е), поступают во внутреннюю часть реактора до внутренней перегородки (Bi) и проникают в периферийное пространство, содержащее парогенераторные трубы (5), по меньшей мере, через одно отверстие (Oi), выполненное во внутренней перегородке (Bi), и покидают упомянутое периферийное пространство через выпускной патрубок (S), расположенный в нижней части кожуха (1). Как изображено на фиг.1, в верхней части перегородки Bi расположены предпочтительно одно или несколько отверстий (Oi).

Для усиления теплообмена между дымовыми газами (10) и парогенераторными трубами (5) могут быть установлены направляющие листы (не изображенные на фиг.1 и 2) для того, чтобы дымовые газы (10) принудительно пересекали трубы (5) скорее, чем следовали по их длине.

В соответствии с другим вариантом воплощения парогенераторные трубы (5) сами могут быть расположены в трубах (не изображенных на фиг.1 и 2), по которым проходят дымовые газы (10) для ускорения и интенсификации теплообмена между упомянутыми дымовыми газами и парогенераторными трубами (5).

Пучок труб (5) может быть также использован для получения перегретого пара.

ПРИМЕР РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ

Пример воплощения изобретения осуществлен для установки с производительностью 100000 Нм3/ч чистого водорода. Для такой мощности реактор HyGenSys образован 301 каталитической трубой высотой 15 м.

Между трубами предполагается шаг в 450 мм. Предполагается, что часть пара, необходимого для осуществления способа, генерируется внутренним теплообменником реактора, соединенного с резервуаром пара и работающего в качестве термосифона.

Количество тепла, необходимого для испарения, составляет 30 МВт. Способ осуществляется при расходе дымовых газов в 400 Т/ч при давлении в 3 абсолютных бара на входе реактора.

Температура дымовых газов на выходе секции обмена с каталитическими трубами составляет 600°С.

Температура дымовых газов на выходе секции парообразования составляет 375°С.

Трубы парообразования имеют внешний диаметр 50 мм и внутренний диаметр 44 мм.

Эти трубы парообразования расположены в кольцевой зоне шириной в 120 мм, размещенной по периферии реактора. Скорость дымовых газов между трубами составляет 92 м/сек.

Общий коэффициент теплообмена составляет 285 Вт/м2/°C, и теплообмен требует размещения 210 труб той же высоты, что и каталитические трубы.

Шаг между трубами также составляет 134 мм.

Внутренний диаметр реактора без жаропрочного материала составляет 9 м, тогда как он был бы в 8,76 м без секции парообразования. Таким образом, дополнительный объем, обусловленный использованием встроенного парогенераторного пучка, составляет 5,2%, и выигрыш в энергетической отдаче, непосредственно связанный с выходной температурой дымовых газов, составляет 32%.


ТЕПЛООБМЕННЫЙ РЕАКТОР ДЛЯ ПРОИЗВОДСТВА ВОДОРОДА С ПОМОЩЬЮ ВСТРОЕННОГО ПУЧКА ПАРОГЕНЕРАТОРА
ТЕПЛООБМЕННЫЙ РЕАКТОР ДЛЯ ПРОИЗВОДСТВА ВОДОРОДА С ПОМОЩЬЮ ВСТРОЕННОГО ПУЧКА ПАРОГЕНЕРАТОРА
ТЕПЛООБМЕННЫЙ РЕАКТОР ДЛЯ ПРОИЗВОДСТВА ВОДОРОДА С ПОМОЩЬЮ ВСТРОЕННОГО ПУЧКА ПАРОГЕНЕРАТОРА
Источник поступления информации: Роспатент

Showing 81-90 of 163 items.
10.05.2018
№218.016.3a37

Термически и механически интегрированный способ получения окиси этилена из потока этанола

Изобретение относится к способу дегидратации этанольного сырья в этилен с последующим окислением этилена до окиси этилена, включающему стадию испарения сырья, содержащего указанное этанольное сырье и по меньшей мере часть потока воды разбавления, содержащей возвращаемый этанол, чтобы получить...
Тип: Изобретение
Номер охранного документа: 0002647596
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3a94

Термически интегрированный способ получения окиси этилена из потока этанола

Изобретение относится к способу дегидратации этанольного сырья с получением этилена и последующего окисления этилена до окиси этилена, включающему стадию испарения сырья, содержащего указанное этанольное сырье и по меньшей мере часть потока воды разбавления, содержащего повторно используемый...
Тип: Изобретение
Номер охранного документа: 0002647597
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3a9a

Впрыск добавки в установку синтеза углеводородов из синтез-газа, позволяющий контролировать и поддерживать равномерную концентрацию катализатора

Изобретение относится к способу синтеза углеводородов из сырья, содержащего синтез-газ, в котором применяют твердый катализатор Фишера-Тропша в трехфазной реакционной секции, выполненной таким образом, что упомянутый катализатор поддерживается в суспензии в жидкой фазе за счет циркуляции...
Тип: Изобретение
Номер охранного документа: 0002647580
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.42cd

Способ селективной деасфальтизации тяжелого сырья

Настоящее изобретение относится к способу селективной деасфальтизации тяжелого сырья посредством одностадийной жидкостной экстракции в экстракционной среде. При этом экстракция осуществляется с помощью смеси по меньшей мере одного полярного растворителя и по меньшей мере одного аполярного...
Тип: Изобретение
Номер охранного документа: 0002649387
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.483c

Способ гидроочистки вакуумного дистиллята, использующий последовательность катализаторов

Изобретение относится к способу гидроочистки углеводородного сырья, содержащего соединения азота в количестве выше 250 в.ч./млн и имеющего средневзвешенную температуру кипения выше 380°С, включающему следующие стадии, на которых a) приводят в контакт в присутствии водорода указанное...
Тип: Изобретение
Номер охранного документа: 0002651269
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.5007

Способ получения бензина с низким содержанием серы

Настоящее изобретение относится к способу обработки бензина, содержащего диолефины, олефины и сернистые соединения, в том числе меркаптаны, в котором: подают бензин в дистилляционную колонну (3), содержащую по меньшей мере одну реакционную зону (4), содержащую по меньшей мере один первый...
Тип: Изобретение
Номер охранного документа: 0002652801
Дата охранного документа: 03.05.2018
18.05.2018
№218.016.509e

Способ гидрообессеривания углеводородных фракций

Изобретение относится к способу одновременного получения по меньшей мере двух углеводородных фракций с низким содержанием серы из смеси углеводородов, начальная температура кипения которых составляет от 35 до 100°С, а конечная температура кипения составляет от 260 до 340°С, и имеющих общее...
Тип: Изобретение
Номер охранного документа: 0002652982
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.5933

Способ получения бензина с низким содержанием серы

Настоящее изобретение относится к способу обработки бензина, содержащего диолефины, олефины и сернистые соединения, в том числе меркаптаны, состоящему в обработке бензина в присутствии водорода в дистилляционной колонне (2), содержащей по меньшей мере одну реакционную зону (3), содержащую по...
Тип: Изобретение
Номер охранного документа: 0002655169
Дата охранного документа: 24.05.2018
20.06.2018
№218.016.63c4

Комплексный способ обработки нефтяного сырья для производства жидкого топлива с низким содержанием серы

Изобретение относится к способу обработки тяжелого нефтяного сырья для производства жидкого топлива и базисов жидкого топлива с низким содержанием серы, предпочтительно бункерного топлива и базисов бункерного топлива. Описан способ обработки углеводородного сырья, в котором содержание серы...
Тип: Изобретение
Номер охранного документа: 0002657898
Дата охранного документа: 18.06.2018
08.07.2018
№218.016.6e16

Способ раздельной обработки нефтяного сырья для производства жидкого топлива с низким содержанием серы

Изобретение относится к способу обработки тяжелого нефтяного сырья для получения жидкого топлива и базисов жидкого топлива с низким содержанием серы, предпочтительно бункерного топлива и базисов бункерного топлива. Способ обработки углеводородного сырья, в котором содержание серы составляет по...
Тип: Изобретение
Номер охранного документа: 0002660426
Дата охранного документа: 06.07.2018
Showing 81-83 of 83 items.
15.03.2019
№219.016.e0f0

Способ комбинированного производства электроэнергии и получения обогащенного водородом газа паровым риформингом углеводородной фракции с подводом тепла посредством сжигания водорода по месту осуществления способа

Изобретение относится к способу комбинированного производства электроэнергии и получения обогащенного водородом газа паровым риформингом углеводородной фракции. Способ получения синтез-газа паровым риформингом углеводородного сырья в реакторе и комбинированного производства электрической...
Тип: Изобретение
Номер охранного документа: 0002425995
Дата охранного документа: 10.08.2011
19.06.2019
№219.017.8bca

Емкость, содержащая слой гранул, и система распределения газовой и жидкой фаз, циркулирующих в упомянутой емкости в восходящем потоке

Изобретение относится к емкости, содержащей один слой насадки и средства подачи смеси жидкости с газом ко дну емкости. Емкость содержит систему сепарации жидкой фазы и газовой фазы, содержащихся в смеси, причем система размещена между слоем и средствами подачи смеси. Система содержит камеру,...
Тип: Изобретение
Номер охранного документа: 0002466782
Дата охранного документа: 20.11.2012
29.06.2019
№219.017.a166

Реактор-теплообменник с байонетными трубами, конструкция которого позволяет ему работать с перепадами давления порядка 100 бар между трубой и каландром

В изобретении представлен предназначенный для выполнения эндотермических реакций реактор-теплообменник, в состав которого входит каландр, внутри которого циркулирует текучий теплоноситель (11). Внутри каландра расположено множество параллельных труб (4). Внутри труб циркулирует среда,...
Тип: Изобретение
Номер охранного документа: 0002469785
Дата охранного документа: 20.12.2012
+ добавить свой РИД