×
13.01.2017
217.015.75b0

Результат интеллектуальной деятельности: ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и маскировочных мероприятий. Оптический способ дистанционного измерения радиусов частиц в аэрозольных облаках заключается в том, что в течение времени существования аэрозольного облака, когда оно еще регистрируется на фоне неба, с использованием цифрового видеорегистратора измеряют оптическую плотность облака. Далее вычисляют нормированную оптическую плотность облака, которая уменьшается за счет выпадения сначала частиц больших радиусов. Затем измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме. Техническим результатом является дистанционное определение закона распределения частиц по размерам в аэрозольных облаках в оптическом диапазоне электромагнитного спектра. 1 табл., 1 ил.

Изобретение относится к измерительной технике, в частности к способам определения размеров частиц в аэрозольных облаках, и может быть использовано в целях охраны окружающей среды и оценки маскировочной обстановки.

Известные оптические способы определения размеров аэрозольных частиц основаны на решении задач поглощения и рассеяния электромагнитного излучения на частицах различных размеров [Шифрин К.С, Раскин В.Ф. Спектральная прозрачность и обратная задача теории рассеяния. Оптика и спектроскопия. 1961, т. 11, №2, с. 268-271]. На этом принципе предложен ряд способов и устройств определения размеров аэрозольных частиц при использовании как белого света, так и монохроматического излучения, например [Патент RU 2098794 С1, 10.12.1997, МПК 6 G01N 15/02; Патент RU 2235990 С1, 10.09.2004, МПК 7 G01N 15/02; Патент RU 2123176 С1, 10.12.1998, МПК 6 G01N 21/25; Патент RU 2239173 С1, 27.10.2004, МПК 7 G01N 15/02].

Общим недостатком известных способов является отсутствие дистанционности при определении размеров частиц в аэрозольных облаках. Т.е. из облака отбирают пробу, которую затем помещают в устройство определения размеров аэрозолей, принцип работы которого основан на взаимодействии оптического излучения с аэрозолями.

Отбор проб не всегда технически возможен и экономически обоснован. Результаты анализа получаются не в реальном масштабе времени. Кроме того, при взрывных работах и пылении, создаваемом при движении тяжелой техники, наблюдается быстрое выпадение крупнодисперсных аэрозолей и поэтому оптические характеристики облака быстро изменяются. Т.е. вышеуказанные способы можно использовать, если облако состоит из мелкодисперсных аэрозолей, с длительным временем их существования в воздухе.

Дистанционность достигается за счет измерения оптического излучения, рассеянного аэрозольным облаком. Поскольку размеры аэрозолей, образующихся при взрывах и пылении, не менее единиц микрометров, то для решения поставленной задачи - дистанционного измерения размеров частиц в реальном масштабе времени целесообразно использовать видимую часть оптического диапазона без активной подсветки облака.

Известна зависимость оптической плотности аэрозольного облака от распределения частиц в нем, по концентрациям и размерам [В.Е. Зуев, М.В. Кабанов. Оптика атмосферного аэрозоля, М.: Гидрометеоиздат, 1987].

Основной трудностью, препятствующей реализации предлагаемого способа прототипа, является многопараметричность задачи, т.к. оптическая плотность облака зависит от начальной концентрации аэрозольных частиц, распределения этих частиц по размерам, а также от времени выпадения частиц из облака. Для практической реализации способа на первом этапе необходимо создать математическую модель, устраняющую вышеуказанную неопределенность.

Согласно теории объемного рассеяния Ми для частиц, размер которых много больше длины волны видимого излучения, объемный коэффициент рассеяния определяется выражением

где N0 - число частиц в единице объема рассеивающего облака, Rcp - усредненный радиус частиц. Объем частицы . Среднее число частиц в облаке обозначим как N. Тогда и предыдущее выражение можно записать следующим образом:

Оптическая плотность облака, зафиксированная на видеоносителе, например, с использованием цифровой видеокамеры

где Pi - повторяемость градаций частиц в их законе распределения по размерам.

Введем понятие нормированной оптической плотности облака Q(t)/Qmax. Здесь Qmax - максимальная оптическая плотность облака в начальный момент времени, когда выпадение частиц из облака еще не происходило. Отношение Q(t)/Qmax уже не зависит от начальной концентрации аэрозолей. Т.е. нормированная оптическая плотность облака зависит только от распределения частиц по размерам и времени и определяется временем осаждения аэрозольных частиц.

На выпадающую частицу действуют две силы: 1) сила тяжести , где ρ - плотность частицы, R - ее радиус; 2) сила сопротивления при движении в вязкой среде. В случае стационарного облака и ламинарного движения сферической частицы эта сила является силой Стокса , где η - коэффициент динамической вязкости воздуха, υ - скорость движения частицы. Тогда движение падающей частицы описывается дифференциальным уравнением

где - характеристический параметр движения частицы.

Решением уравнения (4) является следующее выражение:

Движение частицы происходит с переменным ускорением. Но при b≥4 частицы практически мгновенно достигают скорости равномерного движения υ0=g/b.

Интегрирование уравнения (5) определяет путь H, проходимый аэрозольной частицей за время t.


Соответственно из уравнения (6) можно определить время t0 осаждения частиц с радиусом R0 с высоты Н0 до момента падения на Землю. Т.е. за время t0 выпадают частицы с радиусами R≥R0, и соответственно уменьшается оптическая плотность облака.

Измеряя среднюю высоту аэрозольного облака [Михеев С.В. Исследование оптико-электронной системы контроля положения объекта методом триангуляции. Дис. канд. тех. наук. 2007. Санкт-Петербургский Государственный университет информационных технологий, механики и оптики. 124 с.], можно вычислить время выпадения частиц различных размеров и плотности. На фиг. 1 представлена номограмма, связывающая время выпадения частиц различных размеров и нормированную оптическую плотность облака, при его средней высоте 50 м. При радиусе частиц R≥300 мкм они падают практически свободно, не зависимо от их плотности. При меньших размерах время выпадения зависит от плотности частиц, что отражено на номограмме в виде двух ветвей, когда плотность изменяются от 1,5·103 кг/м3 - частицы почвы, до 11·103 кг/м3 - частицы тяжелых металлов. Средний радиус аэрозольной частицы определяется по попаданию точки пересечения линий времени выпадения и оптической плотности облака в ту или иную градацию.

Техническим результатом изобретения является дистанционное определение закона распределения частиц по размерам в аэрозольных облаках в оптическом диапазоне электромагнитного спектра.

Указанный технический результат достигается тем, что в течение времени существования аэрозольного облака, с использованием цифрового видеорегистратора измеряют оптическую плотность облака, вычисляют нормированную оптическую плотность облака, измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме.

В качестве примера рассмотрим процесс выпадения частиц гранита с плотностью ρ=2,5·103 кг/м3 из аэрозольного облака, образовывающегося при буровзрывных работах. Высота облака Н0=50 м. Грансостав выпавших частиц определялся методом осаждения в жидкости. В таблице приведены усредненные размеры выпавших частиц по девяти градациям, а также их повторяемости Р. Мелкодисперсная взвесь с радиусом R≤3 мкм образовывалась при бурении. Оставшиеся 88% частиц образовались при взрыве. По уравнению (5) определено время осаждения t0 частиц в воздухе по всем градациям. Для этих же градаций в таблице приведена нормированная оптическая плотность облака Q/Qmax, определенная по результатам цифровой видеосъемки. Для частиц с радиусами меньшими 3 мкм, оптическая плотность облака сравнивалась с фоном неба и не регистрировалась.

На фиг. 1 показаны экспериментальные точки пересечения линии времени выпадения частиц гранита, присутствующих в облаке и его нормированной оптической плотности. Как видно из фиг. 1 - получено хорошее совпадение экспериментально измеренных радиусов частиц, выпавших из облака, и оценок их радиусов по номограмме, что подтверждает достоверность результатов, полученных с использованием предложенного способа.

Таким образом, измеряя высоту и нормированную оптическую плотность облака и вычисляя время выпадения аэрозольных частиц заданных размеров и плотности, можно по номограмме дистанционно определить закон распределения частиц по размерам в аэрозольных облаках.

Оптический способ дистанционного измерения радиусов частиц в аэрозольных облаках, основанный на обработке оптического излучения, рассеянного аэрозолями облака, отличающийся тем, что в течение времени существования аэрозольного облака измеряют оптическую плотность облака, вычисляют нормированную оптическую плотность облака, измеряют среднюю высоту аэрозольного облака, рассчитывают промежутки времени, за которые в выбранных градациях выпадают частицы соответствующих радиусов, и распределение аэрозольных частиц по размерам определяют по попаданию точки пересечения линий времени выпадения частиц и нормированной оптической плотности облака в ту или иную градацию на номограмме.
ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ
ОПТИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦ В АЭРОЗОЛЬНЫХ ОБЛАКАХ
Источник поступления информации: Роспатент

Showing 21-30 of 210 items.
10.06.2015
№216.013.53cd

Комбинированная ложная цель для имитации зенитно-артиллерийских средств

Изобретение относится к средствам обеспечения скрытности вооружения и военной техники от средств разведки видимого, радиолокационного и инфракрасного диапазонов. Комбинированная ложная цель выполнена в виде полномасштабного надувного макета зенитно-артиллерийского средства, покрытого...
Тип: Изобретение
Номер охранного документа: 0002552974
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53d1

Устройство адаптивной маскировки объектов

Изобретение предназначено для маскировки стационарных или движущихся объектов с помощью адаптивных маскировочных устройств, работающих в оптическом диапазоне длин волн. Устройство адаптивной маскировки объектов содержит последовательно соединенные цифровую камеру с выносным объективом, ЭВМ,...
Тип: Изобретение
Номер охранного документа: 0002552978
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.555c

Способ извлечения новокаина из водного раствора

Изобретение относится к аналитической химии и фармацевтике и может быть использовано при анализе остаточного содержания новокаина в водных средах. Способ извлечения новокаина из водных растворов включает приготовление водно-солевого раствора новокаина путем его растворения в насыщенном растворе...
Тип: Изобретение
Номер охранного документа: 0002553373
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.557e

Адаптивный способ защиты объекта от управляемой по лазерному лучу ракеты

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты. Определяют координаты источника этого излучения. Производят ориентацию помехового лазера по этим координатам. Обнаруживают лазерные сигналы...
Тип: Изобретение
Номер охранного документа: 0002553407
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6013

Устройство автоматического выравнивания грузоподъемных механизмов

Изобретение относится к устройствам для выравнивания грузоподъемных механизмов. Устройство автоматического выравнивания грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы, датчик контакта штоков...
Тип: Изобретение
Номер охранного документа: 0002556136
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6951

Комплекс имитации сложных военных объектов

Изобретение относится к средствам обеспечения скрытности вооружения, военной техники и военных объектов (ВВТ и ВО) от средств оптико-электронной, радиолокационной, а также радио- и радиотехнической разведки. Комплекс имитации сложных военных объектов состоит из M средств имитации простых...
Тип: Изобретение
Номер охранного документа: 0002558514
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69f3

Устройство компенсации активных помех с коммутацией компенсационного канала

Изобретение относится к радиолокации, может быть использовано в аппаратуре обнаружения целей на фоне активных помех. Техническим результатом изобретения является уменьшение вероятности ложной тревоги за счет устранения кромок помех. Технический результат достигается тем, что в известное...
Тип: Изобретение
Номер охранного документа: 0002558676
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69fa

Способ определения координат и скорости источника радиоизлучения

Изобретение относится к радиотехнике и может быть использовано для определения местоположения и скорости априорно неизвестного источника радиоизлучения (ИРИ). Достигаемый технический результат - определение за один этап обработки одновременно координат и скорости ИРИ. Способ основан на...
Тип: Изобретение
Номер охранного документа: 0002558683
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e7a

Свч-способ определения осажденной влаги в жидких углеводородах

Предлагаемое изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, и в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом предлагаемого изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002559840
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f67

Способ пассивной радиолокации

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов. Достигаемый технический результат - обеспечение измерения скорости движения объекта при одновременном...
Тип: Изобретение
Номер охранного документа: 0002560089
Дата охранного документа: 20.08.2015
Showing 21-30 of 208 items.
10.06.2015
№216.013.53d1

Устройство адаптивной маскировки объектов

Изобретение предназначено для маскировки стационарных или движущихся объектов с помощью адаптивных маскировочных устройств, работающих в оптическом диапазоне длин волн. Устройство адаптивной маскировки объектов содержит последовательно соединенные цифровую камеру с выносным объективом, ЭВМ,...
Тип: Изобретение
Номер охранного документа: 0002552978
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.555c

Способ извлечения новокаина из водного раствора

Изобретение относится к аналитической химии и фармацевтике и может быть использовано при анализе остаточного содержания новокаина в водных средах. Способ извлечения новокаина из водных растворов включает приготовление водно-солевого раствора новокаина путем его растворения в насыщенном растворе...
Тип: Изобретение
Номер охранного документа: 0002553373
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.557e

Адаптивный способ защиты объекта от управляемой по лазерному лучу ракеты

Изобретение относится к военной технике. При адаптивном способе защиты объекта от управляемой по лазерному лучу ракеты обнаруживают лазерный сигнал ракеты. Определяют координаты источника этого излучения. Производят ориентацию помехового лазера по этим координатам. Обнаруживают лазерные сигналы...
Тип: Изобретение
Номер охранного документа: 0002553407
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6013

Устройство автоматического выравнивания грузоподъемных механизмов

Изобретение относится к устройствам для выравнивания грузоподъемных механизмов. Устройство автоматического выравнивания грузоподъемных механизмов содержит передвижное шасси, опорную платформу, датчик выравнивания опорной платформы в горизонтальное положение, гидроприводы, датчик контакта штоков...
Тип: Изобретение
Номер охранного документа: 0002556136
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6951

Комплекс имитации сложных военных объектов

Изобретение относится к средствам обеспечения скрытности вооружения, военной техники и военных объектов (ВВТ и ВО) от средств оптико-электронной, радиолокационной, а также радио- и радиотехнической разведки. Комплекс имитации сложных военных объектов состоит из M средств имитации простых...
Тип: Изобретение
Номер охранного документа: 0002558514
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69f3

Устройство компенсации активных помех с коммутацией компенсационного канала

Изобретение относится к радиолокации, может быть использовано в аппаратуре обнаружения целей на фоне активных помех. Техническим результатом изобретения является уменьшение вероятности ложной тревоги за счет устранения кромок помех. Технический результат достигается тем, что в известное...
Тип: Изобретение
Номер охранного документа: 0002558676
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69fa

Способ определения координат и скорости источника радиоизлучения

Изобретение относится к радиотехнике и может быть использовано для определения местоположения и скорости априорно неизвестного источника радиоизлучения (ИРИ). Достигаемый технический результат - определение за один этап обработки одновременно координат и скорости ИРИ. Способ основан на...
Тип: Изобретение
Номер охранного документа: 0002558683
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e7a

Свч-способ определения осажденной влаги в жидких углеводородах

Предлагаемое изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, и в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом предлагаемого изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002559840
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f67

Способ пассивной радиолокации

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах пассивной радиолокации для определения местоположения и скорости движения радиоизлучающих объектов. Достигаемый технический результат - обеспечение измерения скорости движения объекта при одновременном...
Тип: Изобретение
Номер охранного документа: 0002560089
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f70

Способ радиоконтроля

Изобретение относится к радиотехнике и может быть использовано при радиоконтроле для определения пространственно-энергетических характеристик наземных объектов по их радиоизлучениям в диапазоне коротких волн. Достигаемый технический результат - определение мощности излучения, увеличение...
Тип: Изобретение
Номер охранного документа: 0002560098
Дата охранного документа: 20.08.2015
+ добавить свой РИД