×
13.01.2017
217.015.75ad

Результат интеллектуальной деятельности: ИЗОЛЯТОР ФАРАДЕЯ С НЕОДНОРОДНЫМ МАГНИТНЫМ ПОЛЕМ ДЛЯ ЛАЗЕРОВ БОЛЬШОЙ МОЩНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея с неоднородным магнитным полем для лазеров большой мощности содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, установленный в магнитной системе, выполненной с использованием постоянных магнитов, и анализатор. Внутри магнитной системы, создающей поле в направлении прямого прохода излучения, содержится дополнительная магнитная система, создающая меньшее поле в направлении обратного прохода излучения с большой поперечной неоднородностью. За счет поперечной неоднородности поля совокупной магнитной системы осуществляется компенсация аксиально-симметричных поляризационных искажений в изоляторе Фарадея, что может быть использовано как для увеличения степени изоляции устройства, так и для увеличения его максимально допустимой рабочей мощности. 2 з.п. ф-лы, 1 ил.

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения.

Основной проблемой, препятствующей разработке и созданию изоляторов Фарадея для лазеров с большой средней мощностью, является наличие поляризационных искажений лазерного луча как на прямом, так и на обратном проходе магнитооптического ротатора (вращателя плоскости поляризации) в изоляторе Фарадея, обусловленных поглощением излучения в материале магнитооптического ротатора при прохождении через него мощного лазерного излучения. Поляризационные искажения лазерного луча приводят к ухудшению важнейшей характеристики изолятора Фарадея - степени изоляции.

Поглощение излучения в магнитооптическом ротаторе вызывает неоднородное по поперечному сечению распределение температуры, что приводит к возникновению трех негативных тепловых эффектов. Во-первых, в результате зависимости показателя преломления от температуры возникают искажения волнового фронта («тепловая линза»). Во-вторых, наряду с циркулярным двулучепреломлением (эффект Фарадея) появляется и линейное, связанное с механическими напряжениями из-за градиента температуры (фотоупругий эффект) и приводящее к поляризационным искажениям (Хазанов Е.А. Компенсация термонаведенных поляризационных искажений в вентилях Фарадея, «Квантовая электроника», 26, №1, 1999, стр. 59-64). В-третьих, зависимость постоянной Верде от температуры приводит к неоднородному распределению угла поворота по поперечному сечению ротатора и, соответственно, к возникновению аксиально-симметричных поляризационных искажений. Два последних эффекта приводят к ухудшению степени изоляции устройства и снижению его предельно допустимой рабочей мощности.

Конфигурация магнитного поля внутри магнитной системы изолятора Фарадея является важной характеристикой этого устройства, поскольку она также может существенным образом влиять на его степень изоляции. Особенностью магнитных систем изоляторов Фарадея является наличие в них отверстия для пропускания лазерного излучения, в результате чего создание однородных по поперечному сечению апертуры магнитных полей становится затруднительным. В большинстве случаев неоднородность магнитного поля рассматривается как негативный фактор, потому что она служит дополнительным источником деполяризации проходящего через изолятор излучения.

Существует ряд методов, направленных на уменьшение влияния поглощения мощного лазерного излучения в магнитооптическом ротаторе на характеристики изоляторов Фарадея с неоднородным магнитным полем. Известен изолятор, направленный на повышение лучевой стойкости устройства при средней мощности лазерного излучения субкиловаттного уровня, содержащий магнитную систему и помещенный в ее магнитное поле магнитооптический ротатор. При этом магнитооптический ротатор охлаждается до температуры жидкого азота, что позволяет существенно повысить его постоянную Верде и термооптические свойства. Вследствие увеличения значения постоянной Верде, для обеспечения заданного угла поворота плоскости поляризации излучения длину магнитооптического ротатора можно существенно сократить. В результате удается значительно сократить величину поглощаемого тепла в изоляторе и проявление всех негативных тепловых эффектов (Железнов Д.С., Войтович А.В., Мухин И.Б., Палашов О.В., Хазанов Е.А. Значительное уменьшение термооптических искажений в изоляторах Фарадея при их охлаждении до 77 К, «Квантовая Электроника» 36, 2006, стр. 383-388). Недостатком такой конструкции является ее сложность и громоздкость, а также неудобства в эксплуатации, связанные с использованием жидкого азота.

Другим подходом к решению данной проблемы является охлаждение магнитооптического ротатора при помощи оптических элементов с высокой теплопроводностью, находящимися в оптическом контакте с его торцевыми поверхностями (Zheleznov D.S., Starobor A.V., Palashov О.V., Khazanov Е.A Cryogenic Faraday isolator with a disk-shaped magneto-optical element «Journal of Optical Society of America B» 29, 2012, стр. 786-792). Благодаря этому удается не только увеличить теплоотвод от магнитооптического ротатора, но и значительно сократить значения градиентов температуры в поперечном направлении относительно оси ротатора за счет перенаправления потока тепла в продольном направлении. Поскольку именно поперечные градиенты температуры приводят к появлению искажений поляризации излучения, влияние поглощения излучения на характеристики изолятора в данном случае уменьшается. Основным недостатком таких изоляторов является сложность конструкции магнитооптического ротатора, которая требует наличия высококачественных оптических контактов, способных выдерживать высокие тепловые нагрузки.

Другой путь уменьшения термонаведенных поляризационных искажений в изоляторах Фарадея с неоднородным полем основан на усовершенствовании характеристик их магнитных систем.

Наиболее близкой по технической сущности к заявляемой конструкции является известная конструкция изолятора Фарадея с неоднородным магнитным полем для лазеров большой мощности, содержащая последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, установленный в магнитной системе, и анализатор, которая выбрана в качестве прототипа (Е.А. Миронов, И.Л. Снетков, А.В. Войтович, О.В. Палашов «Изолятор Фарадея на постоянных магнитах с напряженностью поля 25 кЭ», Квант, электрон., 43:8 (2013), 740-743). Магнитная система изолятора Фарадея выполнена из постоянных магнитов и магнитопроводящих материалов, в ней создается поле напряженностью 2,5 Тесла. Постоянные магниты в конструкции магнитной системы изолятора прототипа представляют собой коаксиально и радиально намагниченные кольца, размеры и расположение которых тщательно подобраны с целью создания сильного магнитного поля в области магнитооптического ротатора. Магнитопроводы, расположенные внутри магнитной системы, позволяют концентрировать силовые линии магнитного поля, тем самым создавая локально в центре поле с еще более высокой напряженностью. Это позволило изготовить изолятор Фарадея с одним магнитооптическим ротатором длиной всего 9 мм, обеспечивающий степень изоляции 30 дБ при максимально допустимой рабочей мощности ~650 Вт.

Недостатком изолятора Фарадея прототипа является поперечный профиль напряженности поля магнитной системы в области магнитооптического ротатора, характеризующийся увеличением напряженности при удалении от оси изолятора. Такая поперечная неоднородность поля приводит к увеличению аксиально-симметричных поляризационных искажений, вызванных зависимостью постоянной Верде от температуры, и снижает возможности применения таких изоляторов при работе с мощным лазерным излучением.

Задачей, на решение которой направлено настоящее изобретение, является компенсация аксиально-симметричных поляризационных искажений в изоляторе Фарадея поперечной неоднородностью поля его магнитной системы, что может быть использовано как для увеличения степени изоляции устройства, так и для увеличения его максимально допустимой рабочей мощности.

Технический результат в разработанном изоляторе Фарадея с неоднородным магнитным полем для лазеров большой мощности достигается за счет того, что он, как и прототип, содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, установленный в магнитной системе, выполненной с использованием постоянных магнитов, и анализатор.

Новым в разработанном изоляторе Фарадея является то, что внутри его магнитной системы, создающей поле в направлении прямого прохода излучения, содержится дополнительная магнитная система, создающая меньшее поле в направлении обратного прохода излучения с большой поперечной неоднородностью.

В частном случае реализации разработанного изолятора Фарадея по п. 2 новым является то, что магнитная система, создающая поле в направлении обратного прохода выполнена в виде соленоида.

В частном случае реализации разработанного изолятора Фарадея по п. 3 новым является то, что магнитная система, создающая поле в направлении обратного прохода выполнена из постоянных магнитов.

Сущность изобретения поясняется чертежами:

- на фиг. 1 представлена в разрезе схема разработанного изолятора Фарадея в соответствии с п. 1 формулы.

Разработанный изолятор Фарадея с неоднородным магнитным полем для лазеров большой мощности, изготовленный в соответствии с п. 1 формулы и представленный на фиг. 1, содержит магнитооптический ротатор 1, помещенный в магнитную систему 2, создающую поле в направлении прямого прохода излучения. Внутри магнитной системы 2 вблизи магнитооптического ротатора 1 расположена дополнительная магнитная система 3, создающая меньшее по величине поле в направлении обратного прохода излучения с большой поперечной неоднородностью. Снаружи магнитной системы 2, вдоль оптической оси изолятора Фарадея находятся поляризатор 4 и анализатор 5, расположенные по разные стороны магнитооптического ротатора 1.

Такое построение изолятора Фарадея в соответствии с п. 1 формулы позволяет повысить его степень изоляции и максимально допустимую рабочую мощность. Этот результат достигается за счет того, что в совокупной магнитной системе, образованной магнитной системой 2 и дополнительной магнитной системой 3, в ее центральной части может быть создано поле со спадающей величиной напряженности при удалении от оси системы в поперечном направлении.

Возможность создания такой поперечной конфигурации напряженности обеспечивается тем, что магниты, составляющие магнитную систему 2 и создающие поле в направлении прямого прохода излучения, расположены преимущественно на значительном расстоянии от магнитооптического ротатора 1, вследствие чего поле, создаваемое магнитной системой 2, обладает малой неоднородностью по поперечному сечению магнитооптического ротатора 1. Дополнительная магнитная система 3, создающая поле в направлении обратного прохода излучения, напротив, расположена в непосредственной близости к магнитооптическому ротатору 1. Она занимает малую часть полного объема совокупной магнитной системы, поэтому поле, создаваемое ей на оси изолятора невелико, но оно существенно возрастает (в разы) при приближении к боковой поверхности магнитооптического ротатора 1. Это справедливо, например, для тонких намагниченных колец и для тонких соленоидов. В результате суммарное поле оказывается сонаправленным с прямым проходом излучения и его величина на оси изолятора оказывается несущественно меньше изначального, но его напряженность спадает при удалении от оси в поперечном направлении, а не возрастает, как в случае с прототипом.

Поглощение лазерного излучения приводит к тому, что температура магнитооптического ротатора 1 в центре оказывается выше, чем на его периферии, а вследствие снижения постоянной Верде при увеличении температуры это приводит к тому, что угол поворота плоскости поляризации излучения, проходящего вдоль оси изолятора, оказывается меньше, чем для излучения, распространяющегося возле края световой апертуры. Угол поворота пропорционален постоянной Верде и напряженности магнитного поля, поэтому в предлагаемом изоляторе Фарадея увеличение постоянной Верде магнитооптического ротатора 1 при удалении от оси изолятора вследствие снижения температуры компенсируется спаданием напряженности поля. Величина деполяризации, обусловленной аксиально-симметричными поляризационными искажениями, снижается, что может быть использовано в целях увеличения степени изоляции или максимально допустимой рабочей мощности.

Разработанный изолятор Фарадея с неоднородным магнитным полем для лазеров большой мощности работает следующим образом. Лазерный пучок (в общем случае - неполяризованный) на прямом проходе через поляризатор 4 делится на нем на два ортогонально поляризованных пучка. Один из пучков выводится из схемы поляризатором 4 и далее не рассматривается. Второй линейно поляризованный пучок проходит через магнитооптический ротатор 1, помещенный в магнитную систему 2, в результате чего плоскость его поляризации поворачивается на некоторый угол. При прохождении через магнитооптический ротатор 1 пучок приобретает поляризационные искажения вследствие неравномерного распределения температуры по поперечному сечению магнитооптического ротатора 1, вызванного поглощением излучения в среде, и зависимости постоянной Верде от температуры. Центральная область магнитооптического ротатора 1 нагревается сильнее периферийных областей и, вследствие убывания постоянной Верде с ростом температуры, угол поворота плоскости поляризации излучения, проходящего через нее, меньше. Компонента пучка с неискаженной поляризацией беспрепятственно проходит сквозь анализатор 5, а деполяризованная компонента отражается им и выводится из схемы. На обратном проходе через изолятор Фарадея линейно поляризованный пучок в магнитооптическом ротаторе 1 получает дополнительное изменение плоскости поляризации на 45° в том же направлении (в сумме 90° относительно своего изначального направления поляризации) и при прохождении поляризатора 4 отразится от него, т.е. не пойдет по пути прямого луча. Однако его деполяризованная компонента пройдет сквозь поляризатор 4 и будет определять основную характеристику изолятора Фарадея - степень изоляции. Поскольку внутри магнитной системы 2 расположена дополнительная магнитная система 3, создающая меньшее по величине поле в противоположном направлении с большой неоднородностью, удается получить спадающий при удалении от оси изолятора профиль напряженности суммарного поля. Относительное увеличение постоянной Верде в периферийных областях магнитооптического ротатора 1 компенсируется меньшей величиной напряженности поля в них, в результате чего профиль распределения угла поворота выравнивается, и величина деполяризации уменьшается.

Таким образом, поляризационные искажения в разработанном изоляторе Фарадея с неоднородным магнитным полем для лазеров большой мощности оказываются меньше по сравнению с прототипом, что позволяет решить поставленную задачу, то есть повысить его степень изоляции или максимально допустимую рабочую мощность.

В первом частном случае реализации разработанного изолятора Фарадея по п. 2 целесообразно изготовить магнитную систему 3, создающую поле в направлении обратного прохода излучения, в виде соленоида. При этом в процессе эксплуатации изолятора потребуется обеспечение магнитной системы 3 током и отводом тепла от нее. Однако достоинством магнитной системы 3 в виде соленоида является то, что она дает преимущество в создании магнитного поля нужной конфигурации, поскольку в данном случае кроме геометрических параметров появляется возможность варьирования силы тока, что в свою очередь позволит получить компенсацию поляризационных искажений для более высоких мощностей лазерного излучения.

Во втором частном случае реализации разработанного изолятора Фарадея по п. 3 целесообразно выполнить магнитную систему, создающую поле в направлении обратного прохода излучения, из постоянных магнитов. В этом случае также удастся получить поле необходимой конфигурации и при этом в процессе эксплуатации изолятора не потребуется обеспечения магнитной системы током и отводом тепла от нее.

Например, как установлено авторами предлагаемого изобретения, использование одного коаксиально намагниченного кольца в качестве системы 3, создающей небольшое по величине поле в направлении обратного прохода излучения с большой поперечной неоднородностью, позволяет создать суммарное поле с 10% неоднородностью на апертуре 10 мм. При этом потери напряженности поля в направлении прямого прохода излучения не превысят 10%. Подобная конструкция магнитной системы позволяет обеспечить полную компенсацию поляризационных искажений, вызванных зависимостью постоянной Верде от температуры, для излучения мощностью 1,5 кВт в криогенном изоляторе Фарадея на кристалле тербий-галлиевого граната. Использование более сложных конструкций магнитных систем позволит добиться лучших результатов.


ИЗОЛЯТОР ФАРАДЕЯ С НЕОДНОРОДНЫМ МАГНИТНЫМ ПОЛЕМ ДЛЯ ЛАЗЕРОВ БОЛЬШОЙ МОЩНОСТИ
ИЗОЛЯТОР ФАРАДЕЯ С НЕОДНОРОДНЫМ МАГНИТНЫМ ПОЛЕМ ДЛЯ ЛАЗЕРОВ БОЛЬШОЙ МОЩНОСТИ
Источник поступления информации: Роспатент

Showing 71-78 of 78 items.
12.07.2020
№220.018.31fd

Наземный пассивный микроволновый радиометрический комплекс для измерения высотного профиля температуры нижней и средней атмосферы земли

Изобретение относится к устройствам измерения характеристик атмосферы, позволяет измерять высотный профиль температуры нижней и средней атмосферы с поверхности Земли и представляет собой пассивный наземный комплекс из трех сопряженных с персональным компьютером спектрорадиометров, каждый из...
Тип: Изобретение
Номер охранного документа: 0002726276
Дата охранного документа: 10.07.2020
12.07.2020
№220.018.3211

Изолятор фарадея на постоянных магнитах с высокой напряженностью магнитного поля

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с высокой средней мощностью излучения. Сущность изобретения заключается в том, что изолятор Фарадея на постоянных магнитах с высокой напряженностью магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002726274
Дата охранного документа: 10.07.2020
06.08.2020
№220.018.3ce4

Способ определения оптической толщины атмосферы

Изобретение относится к области диагностики характеристик атмосферы и касается способа определения оптической толщины атмосферы. Способ включает в себя получение оптических изображений неба вблизи горизонта с захватом линии горизонта не менее чем в трех спектральных окнах оптического спектра,...
Тип: Изобретение
Номер охранного документа: 0002729171
Дата охранного документа: 04.08.2020
12.04.2023
№223.018.49bb

Способ определения размеров дефекта при ультразвуковом контроле с помощью датчика на фазированной решетке

Использование: для определения размеров дефекта при ультразвуковом контроле с помощью датчика на фазированной решетке. Сущность изобретения заключается в том, что определение размеров дефекта при ультразвуковом контроле с помощью датчика на фазированной решетке основано на анализе S, С или D...
Тип: Изобретение
Номер охранного документа: 0002762780
Дата охранного документа: 22.12.2021
30.05.2023
№223.018.737a

Способ прогнозирования риска некроза свободного аутодермотрансплантата

Изобретение относится к медицине, а именно к трансплантологии и реконструктивной хирургии. Оценивают изменения состояния микроциркуляторного кровотока в тканях аутодермотрансплантата после свободной кожной пластики. Для кожной пластики используют свободный расщепленный аутодермотрансплантат....
Тип: Изобретение
Номер охранного документа: 0002760989
Дата охранного документа: 02.12.2021
30.05.2023
№223.018.73cc

Способ оценки готовности реципиентной раны к свободной кожной пластике аутодермотрансплантатом

Изобретение относится к области медицины, а именно к общей хирургии, пластической хирургии, травматологии, и может быть использовано при подготовке реципиентной раны к свободной кожной пластике расщепленным аутодермотрансплантатом. C помощью оптической диффузионной спектроскопии определяют...
Тип: Изобретение
Номер охранного документа: 0002755490
Дата охранного документа: 16.09.2021
01.06.2023
№223.018.74c7

Неадиабатическая электронная пушка для мазера на циклотронном резонансе

Изобретение относится к технике вакуумных СВЧ электронных приборов. Технический результат - повышение устойчивости и эффективности работы пушки. Неадиабатическая электронная пушка для мазера на циклотронном резонансе (МЦР) включает расположенные на спадающем участке магнитного поля основного...
Тип: Изобретение
Номер охранного документа: 0002765773
Дата охранного документа: 02.02.2022
16.06.2023
№223.018.7c6b

Способ непрерывного мониторинга уровня глюкозы в биологической жидкости организма и устройство для его реализации

Группа изобретений относится к медицине, а именно к способу и устройству непрерывного мониторинга уровня глюкозы. При исполнении способа калибруют устройство непрерывного мониторинга уровня глюкозы с учетом величин температуры и кислотности исследуемой биологической жидкости. Размещают его в...
Тип: Изобретение
Номер охранного документа: 0002749982
Дата охранного документа: 21.06.2021
Showing 41-49 of 49 items.
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
29.04.2019
№219.017.4468

Оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности

Оптический вентиль содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, установленный в магнитной системе, и анализатор. При этом магнитооптический ротатор изготовлен в виде двух фарадеевских элементов, поворачивающих плоскость поляризации на 22,5°...
Тип: Изобретение
Номер охранного документа: 0002458374
Дата охранного документа: 10.08.2012
09.05.2019
№219.017.49a4

Активный элемент дискового лазера с системой охлаждения

Изобретение относится к лазерной технике. Сущность заключается в раздельном охлаждении внутренней и внешней части дискового активного элемента либо путем торцевого присоединения внутренней и внешней его части к охлаждающим радиаторам с различной температурой, либо прикреплением внутренней части...
Тип: Изобретение
Номер охранного документа: 0002687088
Дата охранного документа: 07.05.2019
31.05.2019
№219.017.7012

Лазер с модуляцией добротности резонатора и стабилизацией выходных импульсов (варианты)

Изобретение относится к лазерной технике и может быть использовано для конструирования импульсных лазеров с модуляцией добротности. Блок накачки, осуществляющий работу в постоянном режиме, выполнен автономным от задающего генератора, блок управления содержит источник промежуточного напряжения,...
Тип: Изобретение
Номер охранного документа: 0002689846
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.7263

Изолятор фарадея для лазеров с высокой средней мощностью излучения

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор содержит магнитооптический ротатор, установленный в магнитной системе и представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002690037
Дата охранного документа: 30.05.2019
05.02.2020
№220.017.fe00

Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка

Изобретение относится к лазерной технике. Твердотельный лазерный усилитель включает основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент продолговатой аксиально-симметричной формы с переменным по площади...
Тип: Изобретение
Номер охранного документа: 0002712966
Дата охранного документа: 03.02.2020
08.02.2020
№220.018.006e

Дисковый лазерный неустойчивый резонатор для обеспечения выходного лазерного сигнала с близким к дифракционному качеством пучка

Изобретение относится к лазерной технике. Кольцевой дисковый лазерный неустойчивый резонатор состоит из системы формирования изображения, образованной усилительным узлом и телескопом для увеличения диаметра пучка лазерного излучения, расположенного между усилительным узлом и телескопом зеркала...
Тип: Изобретение
Номер охранного документа: 0002713561
Дата охранного документа: 05.02.2020
25.03.2020
№220.018.0fb0

Изолятор фарадея с компенсацией аксиально-симметричных поляризационных искажений

Изобретение относится к области лазерной техники и касается изолятора Фарадея. Изолятор содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, помещенный в поле, создаваемое магнитной системой, и анализатор. Магнитооптический ротатор выполнен из...
Тип: Изобретение
Номер охранного документа: 0002717394
Дата охранного документа: 23.03.2020
12.07.2020
№220.018.3211

Изолятор фарадея на постоянных магнитах с высокой напряженностью магнитного поля

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с высокой средней мощностью излучения. Сущность изобретения заключается в том, что изолятор Фарадея на постоянных магнитах с высокой напряженностью магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002726274
Дата охранного документа: 10.07.2020
+ добавить свой РИД