×
13.01.2017
217.015.7584

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ НАПОЛНЕННЫХ ЭПОКСИДНЫХ КОМПАУНДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам изготовления электроизоляционных эпоксидных заливочных компаундов, наполненных порошковым ультрадисперсным наполнителем или их смесью, в частности для создания монолитных радиотехнических схем или их узлов. Описан способ изготовления наполненных эпоксидных компаундов, включающий смешивание отвердителя, наполнителя и эпоксидной смолы в заданных соотношениях и последующую ультразвуковую обработку состава, таким образом, что перед приготовлением компаунда ультрадисперсный наполнитель подвергают сушке при температуре 120±5°С и остаточном давлении не более 1 мм рт. ст. в течение не менее 5 часов, далее смешивают эпоксидную смолу с ультрадисперсным наполнителем с получением суспензии, повышают температуру до 90±10°С ультразвуковым воздействием при частоте 20,0±0,5 кГц и мощности генератора не менее 100 Вт, поддерживают температуру суспензии в течение 10-20 минут, вакуумируют суспензию при остаточном давлении не более 1 мм рт. ст. в течение не менее 20 минут, далее смешивают полученную суспензию с отвердителем, где соотношение составляет, масс. ч.: эпоксидная смола ЭД-20 или ЭД-22 - 100; ультрадисперсный наполнитель - 5,4-60; отвердитель аминного типа - 8-20. Техническим результатом является улучшение эксплуатационных свойств отвержденного материала и возможность изготовления эпоксидных компаундов с равномерно диспергированным ультрадисперсным наполнителем. 1 з.п. ф-лы, 2 ил., 3 пр.

Область техники, к которой относится изобретение.

Данное изобретение относится к способам изготовления электроизоляционных эпоксидных заливочных компаундов, наполненных порошковым ультрадисперсным наполнителем (с размерами частиц от 1 до 0,001 мкм) или их смесью, в частности для создания монолитных радиотехнических схем или их узлов.

Уровень техники.

Эпоксидные компаунды находят широкое применение в электротехнической, радиоэлектронной промышленности, авиа-, судо- и машиностроении, за счет хороших электроизоляционных свойств и широкого диапазона рабочих температур. Использование в составах эпоксидных компаундов функциональных наполнителей позволяет повысить комплекс эксплуатационных характеристик, необходимых для применения данного компаунда в конкретной области техники. Однако, при введении ультрадисперсных частиц с размерами от 1 до 0,001 мкм в олигомерное жидкое связующее, как правило происходит агломерация наполнителя. Агломераты можно представить как большие частицы с высокой пористостью. Эффективным методом диспергирования наполнителя, препятствующим образованию агломератов частиц является ультразвуковая обработка. Кроме того, в процессе предварительного совмещения вязкого олигомерного связующего с порошковым наполнителем происходит накопление пузырьков воздуха в объеме компаунда, за счет захвата воздуха при перемешивании, а также выделении сорбированного на ультрадисперсных частицах пузырьков газа. Ультразвуковая обработка с последующим вакуумированием позволяет эффективно удалять накопленный в объеме компаунда воздух, что исключает возникновение полостей и раковин в твердеющей заливке. Однако ненормированное воздействие ультразвука на наполненные композиции может приводить к существенному перегреву озвучиваемого материала выше температуры термической деструкции олигомерного связующего, что приводит к значительному ухудшению эксплуатационных свойств отвержденного материала.

Известен способ получения композиционных материалов на основе эпоксидного олигомера (смола ЭД-20) и нанонаполнителей (диссертация «Получение композиционных материалов на основе эпоксидного олигомера и нанонаполнителей», Тренисова А.Л., РХТУ им. Д.И. Менделеева, 2009). В данном способе для получения эпоксидных нанокомпозитов, содержащих монтмориллонит (наноглина), с применением ультразвуковой установки оборудованной погружным волноводом (диаметр волновода 1,5 см; частота колебаний 22 кГц; мощность 100 Вт) осуществлялось воздействие ультразвука в течение 2 минут на диспергируемый материал. Испытания данного метода введения монтморилмонита марки Cloisite 30В в эпоксидную смолу на основе олигомера ЭД-20 показали, что введение Cloisite 30В по данному методу позволяет равномерно распределить наполнитель (в концентрации до 5% масс.) по объему олигомера. Преимущество данного способа в том, что он не требует использования дополнительных растворителей.

Недостатком известного способа является узкие граничные условия его применения. Так в случае применения данного способа к ультрадиснерсным материалам других марок или большему количеству наполнителя, воздействие ультразвука в течение 2 минут может оказаться не достаточным для полного диспергирования наполнителя, как и при диспергировании большого объема композиции. Так же отсутствие контроля температуры композиции при постоянной мощности может приводить к перегреву эпоксидной смолы, что существенным образом влияет на конечные свойства композита.

Известен способ получения эпоксидной композиции с повышенной стойкостью к растрескиванию (Патент РФ №2405795, опубликованный 10.12.2010 Бюл. №34) на основе эпоксидного олигомера и углеродных нанотрубок. Способ подразумевает следующие этапы:

а) приготовление суспензии функционализованных OH-груипами углеродных нанотрубок в метилэтилкетоновом растворителе путем перемешивания в ультразвуковом диспергаторе с частотой от примерно 2 до примерно 6 МГц и мощностью на активном элементе не менее примерно 5 Вт/см2;

б) введение в приготовленную суспензию дискретного волокнистого наполнителя в виде волластонита и перемешивание до образования однородной смеси;

в) удаление из полученной смеси метилэтилкетонового растворителя;

г) введение смеси после удаления растворителя в эпоксидное связующее;

д) перемешивание получившегося компаунда, получая тем самым упомянутую эпоксидную композицию с повышенной стойкостью к растрескиванию.

Недостатком известного метода является сложность изготовления композиции.

Известен способ диспергирования наноразмерного порошка диоксида кремния (SiO2) в жидкой среде (Патент РФ №2508963, опубликованный 10.03.2014 Бюл. №7), включающий введение в жидкость нанопорошка диоксида и воздействие на нее ультразвуковыми колебаниями, отличающийся тем, что в жидкость вводят нанопорошок диоксида кремния марки Таркосил Т05В 06, а воздействие ультразвуковыми колебаниями осуществляют в течение 3 мин с обеспечением в обрабатываемой среде режима акустической кавитации на резонансной частоте 23 кГц.

Недостатком известного способа является тот факт, что использование данного метода применительно к порошкам других марок может выявить недостаточным трехминутное ультразвуковое воздействие для удовлетворительного диспергирования композиции.

Наиболее близким техническим решением, выбранным в качестве прототипа является способ получения влагозащитного заливочного компаунда (Патент РФ №2063412, опубликованный 10.07.1996), включающий введение в эпоксидный диановый олигомер минерального наполнителя и аминного отвердителя с последующим перемешиванием компонентов до достижения однородности, отличающийся тем, что после перемешивания компонентов состав подвергают ультразвуковому воздействию в течение 30-600 с, а в качестве аминного отвердителя используют полиоксипропилендиамин с молекулярной массой 200 или моноцианэтилдиэтилентриамин и компоненты берут в следующем соотношении, мас. ч.:

Эпоксидный диановый олигомер 100;

Полиоксипропилендиамин с молекулярной массой 200 25-40;

или

Моноцианэтилдиэтилентриамин 20-30;

Минеральный наполнитель 1-200.

Недостатком известного способа является то обстоятельство, что воздействие ультразвука в течение 10 минут может оказаться не достаточным для диспергирования большого объема композиции. Так же отсутствие контроля температуры композиции при постоянной мощности может приводить к перегреву эпоксидной смолы и существенному ухудшению эксплуатационных свойств отвержденного материала.

Раскрытие изобретения.

Предложенное изобретение позволяет улучшить эксплуатационные свойства отвержденного материала и решает задачу изготовления эпоксидных компаундов с равномерно диспергированным ультрадисперсным наполнителем.

Решение указанной задачи достигается за счет того, что способ изготовления наполненных эпоксидных компаундов включает смешивание отвердителя аминного типа и суспензии, подвергнутой ультразвуковому воздействию и состоящей из эпоксидной смолы, смешанной в заданных соотношениях с ультрадисперсным наполнителем. Предварительную сушку ультрадисперсного наполнителя осуществляют при температуре 120±5°С и остаточном давлении не более 1 мм рт. ст. в течение не менее 5 часов, а температуру суспензии воздействием ультразвука повышают до 90±10°С и регулировкой мощности ультразвуковой установки поддерживают ее в течение 10-20 минут, затем проводят вакуумирование суспензии при остаточном давлении не более 1 мм рт. ст. в течение не менее 20 минут. Ультрадисперсный наполнитель имеет размеры от 1 до 0,001 мкм. Ультразвуковое воздействие при повышении температуры суспензии до 90±10°С осуществляют цилиндрическим погружным зондом с диаметром от 10 до 15 мм с частотой 20,0±0,5 кГц при мощности не менее 100 Вт. Поддержание температуры 90±10°С в течение 10-20 минут осуществляют цилиндрическим погружным зондом с диаметром от 10 до 15 мм с частотой 20,0±0,5 кГц при регулировке мощности ультразвуковой установки от 0 до 200 Вт.

Компоненты компаунда берут со следующим соотношением мас. ч.:

эпоксидная смола ЭД-20 или ЭД-22: 100;

ультрадисперсный наполнитель: 0-400;

отвердитель аминного типа 5-20.

Краткое описание чертежей

На фиг. 1 показан способ контроля температуры при воздействии ультразвуковой установки, где волновод ультразвуковой установки - 1, суспензия эпоксидной смолы с наполнителем - 2, термопара - 3.

На фиг. 2 представлена зависимость температуры суспензии при воздействии ультразвука.

Сущность способа.

Способ изготовления наполненных эпоксидных компаундов заключается в следующем. Перед приготовлением компаунда ультрадисперсный наполнитель подвергают сушке в термовакуумном шкафу при температуре (120±5)°С и остаточном давлении не более 1 мм рт. ст. в течение не менее 5 часов. Далее смешивают эпоксидную смолу с необходимым количеством ультрадисперсного наполнителя. Полученную суспензию подвергают ультразвуковому воздействию с постоянным контролем ее температуры. Ультразвуковое воздействие должно осуществляться через цилиндрический зонд с диаметром от 10 до 15 мм, с частой 20,0±0,5 кГц при мощности генератора не менее 100 Вт. За счет воздействия ультразвука доводят температуру суспензии до 90±10°С. Далее продолжают воздействие ультразвука с регулированием мощности для поддержания температуры суспензии в диапазоне 90±10°С в течение 10-20 минут. После этого проводят вакуумирование суспензии при остаточном давлении не более 1 мм рт. ст. в течение не менее 20 минут. Далее проводят смешивание полученной суспензии с отвердителем аминного типа.

Ниже приведены примеры конкретной реализации предложенного способа.

Пример 1

В качестве наполнителя компаунда используется ультрадисперсный порошок нитрида бора с размером частиц от 0,1 до 1 мкм для повышения теплопроводящих свойств эпоксидного компаунда.

Компаунд готовят по указанному способу по следующей рецептуре:

- эпоксидная смола ЭД-20 - 100 м.ч.;

- нитрид бора - 60 м.ч.;

- отвердитель аминного типа ПЭПА - 8-15 м.ч.

В результате получается заливочный компаунд для герметизации тепловыделяющих элементов электросхем, отверждающийся в нормальных климатических условиях.

Пример 2

В качестве наполнителей компаунда используются ультрадисперсный порошок вольфрама и оксида церия с размерами частиц 300-400 нм и 20-30 нм, соответственно, для повышения механических свойств эпоксидного компаунда.

Компаунд готовят по указанному способу по следующей рецептуре:

- эпоксидная смола ЭД-22 - 100 м.ч.;

- вольфрам - 5 м.ч.;

- оксид церия - 0,4; м.ч.

- отвердитель МФДА - 15-20 м.ч.

В результате получается заливочный компаунд для герметизации радиотехнических схем или их узлов, имеющий повышенную механическую прочность.

Пример 3

В качестве наполнителя компаунда используется ультрадисперсный порошок оксида гадолиния с размером частиц от 0,01 до 0,1 мкм для получения компаунда с повышенными рентгенозащитными свойствами.

Компаунд готовят по указанному способу по следующей рецептуре:

- эпоксидная смола ЭД-20 - 100 м.ч.;

- оксид гадолиния - 50 м.ч.;

- отвердитель аминного типа ПЭПА - 8-15 м.ч.

В результате получается заливочный компаунд для защиты от рентгеновского излучения источников изотопного излучения, отверждающийся в нормальных климатических условиях.

Таким образом, применение данного способа позволяет улучшить эксплуатационные свойств наполненных эпоксидных компаундов и решить задачу изготовления эпоксидных компаундов с равномерно диспергированным ультрадисперсным наполнителем.


СПОСОБ ИЗГОТОВЛЕНИЯ НАПОЛНЕННЫХ ЭПОКСИДНЫХ КОМПАУНДОВ
СПОСОБ ИЗГОТОВЛЕНИЯ НАПОЛНЕННЫХ ЭПОКСИДНЫХ КОМПАУНДОВ
Источник поступления информации: Роспатент

Showing 161-170 of 191 items.
10.05.2018
№218.016.453e

Генератор электромагнитных импульсов

Изобретение относится к технике генерации мощных электромагнитных импульсов и может быть использовано в импульсной радиолокации и при испытаниях технических средств на воздействие мощных импульсных электромагнитных полей. Технический результат - увеличение плотности излучаемой мощности ЭМИ,...
Тип: Изобретение
Номер охранного документа: 0002650103
Дата охранного документа: 09.04.2018
10.05.2018
№218.016.47e8

Радиационный монитор и способ определения мощности эквивалентной дозы гамма-излучения

Группа изобретений относится к области измерительной техники, а именно к радиометрии фотонов, и может быть использована при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды....
Тип: Изобретение
Номер охранного документа: 0002650726
Дата охранного документа: 17.04.2018
29.05.2018
№218.016.5648

Электромагнитный привод

Изобретение относится к области электротехники, в частности к электромагнитным приводам постоянного тока для передачи угловых перемещений, и может быть использовано для создания двухпозиционных электромагнитных реле или устройств с поворотом подвижного элемента на некоторый ограниченный угол и...
Тип: Изобретение
Номер охранного документа: 0002654498
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5662

Вакуумный искровой разрядник

Изобретение относится к электротехнике и сильноточной электронике, представляет собой вакуумный искровой разрядник и может использоваться для коммутации сильноточных высоковольтных электрических систем. Вакуумный искровой разрядник включает герметичную диэлектрическую оболочку, содержащую...
Тип: Изобретение
Номер охранного документа: 0002654494
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.56bb

Вакуумный разрядник

Изобретение относится к электротехнике и сильноточной электронике, в частности к средствам коммутации, представляет собой вакуумный разрядник, управляемый сфокусированным оптическим излучением, и может использоваться для коммутации сильноточных высоковольтных электрических систем. В герметичной...
Тип: Изобретение
Номер охранного документа: 0002654493
Дата охранного документа: 21.05.2018
09.06.2018
№218.016.5a61

Способ автоматизированного измерения сопротивлений

Изобретение относится к измерительной технике, представляет собой способ автоматизированного измерения сопротивлений и может применяться для удаленного контроля сопротивлений в случае их соизмеримости с сопротивлением линий связи и коммутации. При реализации способа входы двухпроводного...
Тип: Изобретение
Номер охранного документа: 0002655470
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aa0

Способ повышения спектральной чувствительности брэгговского преобразователя деформации балочного типа

Изобретение относится к измерительной технике, а именно к созданию чувствительных элементов спектральных датчиков и преобразователей физических величин. Упругий элемент брэгговского преобразователя деформации, из кварца или монокристаллического материала, закрепляют консольно в опорной детали....
Тип: Изобретение
Номер охранного документа: 0002655471
Дата охранного документа: 28.05.2018
09.08.2018
№218.016.7a37

Позиционно чувствительный детектор излучений

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании позиционно чувствительных детекторов. Сущность изобретения заключается в том, что позиционно чувствительный детектор излучений содержит сцинтиллятор, при этом сцинтиллятор выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002663307
Дата охранного документа: 07.08.2018
05.09.2018
№218.016.8347

Гидропривод

Гидропривод предназначен для грузоподъемных машин. Гидропривод содержит два трехпозиционных крана управления, гидроцилиндр, цилиндр, поршень, шток, трубу, которая закреплена со стороны поршневой полости в торце цилиндра и соединена с левой гидролинией от первого трехпозиционного крана,...
Тип: Изобретение
Номер охранного документа: 0002665762
Дата охранного документа: 04.09.2018
13.11.2018
№218.016.9c9a

Электроизоляционный заливочно-пропиточный компаунд

Изобретение относится к области электротехники, в частности к эпоксидным низковязким заливочно-пропиточным компаундам, используемым для электроизолирования и упрочнения путем заливки высоковольтных блоков питания, трансформаторов, для герметизации и защиты элементов радиоэлектронной аппаратуры...
Тип: Изобретение
Номер охранного документа: 0002672094
Дата охранного документа: 12.11.2018
Showing 151-156 of 156 items.
20.01.2018
№218.016.0ffb

Устройство для определения направления и дальности до источника сигналов

Изобретение относится к пеленгаторам и может быть использовано для определения направления и дальности до источника сигналов. Сущность: устройство содержит ПЭВМ (1), блок (5) системы единого времени, блок (6) связи с абонентами, первый блок (7) схем ИЛИ, а также первый и второй идентичные...
Тип: Изобретение
Номер охранного документа: 0002633647
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1077

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для отжига полупроводниковых, керамических и стеклообразных материалов. Осуществляют облучение поверхности лазерным импульсом прямоугольной формы с требуемой плотностью энергии. Исходный...
Тип: Изобретение
Номер охранного документа: 0002633860
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1365

Аэродромная тележка-погрузчик

Изобретение относится к обслуживанию авиационной техники. Аэродромная тележка - погрузчик содержит ходовую часть (1), механизм (26) поперечного перемещения, механизм (10) подъема. Механизм поперечного перемещения имеет неподвижную раму (25) с закрепленными на ней катками (43), внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002634518
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1c36

Способ изготовления серебряно-кислородно-цезиевого фотокатода

Изобретение относится к электровакуумной технике, в частности к изготовлению полупрозрачных серебряно-кислородно-цезиевых фотокатодов в случаях, где конструктивно нежелательно проведение высокочастотного разряда для окисления основного слоя серебра, а также в целях предотвращения окисления...
Тип: Изобретение
Номер охранного документа: 0002640402
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.363b

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в расчете условия...
Тип: Изобретение
Номер охранного документа: 0002646177
Дата охранного документа: 01.03.2018
15.05.2023
№223.018.58b2

Способ повышения надежности обратного клапана

Изобретение относится к гидравлическим предохранительным устройствам, а именно к повышению надежности устройств, предназначенных для предотвращения перетекания жидкости из полости высокого в полость низкого давления при быстропротекающих процессах. Запорный элемент в виде шарика выполняют из...
Тип: Изобретение
Номер охранного документа: 0002764942
Дата охранного документа: 24.01.2022
+ добавить свой РИД