×
13.01.2017
217.015.748d

Результат интеллектуальной деятельности: ОПТИЧЕСКАЯ УСИЛИТЕЛЬНАЯ ГОЛОВКА С ДИОДНОЙ НАКАЧКОЙ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Оптическая усилительная головка с диодной накачкой содержит размещенные в корпусе: активный элемент в виде стержня, матрицы лазерных диодов, расположенные равномерно на держателях, и систему охлаждения, содержащую трубку, охватывающую активный элемент с образованием кольцевого канала δ, каналы, расположенные в корпусе и каждом держателе, входной, выходной патрубки и выполненные в корпусе входной и выходной коллекторы, трубка выполнена из материала, прозрачного для излучения накачки. Система охлаждения выполнена в виде единого контура, а корпус оптической усилительной головки выполнен в виде цилиндра. Технический результат заключается в обеспечении возможности уменьшения гидравлического сопротивления системы охлаждения. 2 н. и 3 з.п. ф-лы, 8 ил.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам накачки и системам их охлаждения, и может быть использовано при изготовлении лазерной техники.

Известна оптическая усилительная головка (ОУГ) с диодной накачкой, состоящая из размещенных в корпусе активного элемента (АЭ) в виде стержня, матриц лазерных диодов (МЛД), расположенных на держателях, и системы охлаждения (СО), содержащей трубку, охватывающую АЭ с образованием кольцевого канала, и каналы, расположенные в корпусе и держателях, с входным и выходным патрубками. Каналы расположены также в МЛД, которые выполнены в виде блоков линеек лазерных диодов и расположены под углом 90° к оси АЭ. Устройство снабжено демпфирующими элементами, установленными на обоих торцах трубки, в качестве демпфирующих элементов использованы прокладки (патент США №6101208, H01S 3/0941, 1997 г.).

В этом устройстве охлаждение АЭ и МЛД происходит за счет высокой скорости потока охлаждающей жидкости (ОЖ). Поддержание постоянной температуры ОЖ позволяет продлить срок службы МЛД и обеспечить постоянные и устойчивые выходные параметры ОУГ.

Однако неравномерное и неполное заполнение излучением накачки АЭ приводит к образованию неоднородных областей возбуждения, возникновению термомеханических напряжений внутри АЭ, что может привести к выходу его из строя. Неравномерность заполнения излучением накачки АЭ приводит также и к снижению эффективности накачки. Расположение охлаждающих каналов в матрицах лазерных диодов не оптимально, так как расстояние от МЛД до охлаждающих каналов не минимально, как следствие этого падает эффективность отвода тепла с нагретой поверхности МЛД. Это может привести к снижению качества охлаждения МЛД и уменьшению запасенной в инверсной населенности энергии.

Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является ОУГ с диодной накачкой, состоящая из размещенных в корпусе АЭ в виде стержня, МЛД, расположенных равномерно на держателях и обращенных излучающей областью к АЭ, и СО, содержащей трубку, охватывающую АЭ с образованием кольцевого канала δ, каналов, расположенных в корпусе и каждом держателе, входного, выходного патрубков и выполненных в корпусе входного и выходного коллекторов, из которых выходят каналы, соединенные с поворотными каналами, выполненными в держателях, размещенных в отверстиях, выполненных на внешней поверхности корпуса, трубка выполнена из материала, прозрачного для излучения накачки (патент РФ №2498467, МПК H01S 3/0933, 3/042, опубл. 2013 г.).

Расположение МЛД равномерно вокруг АЭ позволяет равномерно заполнить АЭ излучением накачки, что уменьшает в нем термические напряжения, а также повышает эффективность накачки. Выполнение СО из двух независимых контуров охлаждения позволяет независимо регулировать и поддерживать оптимальную температуру для МЛД и АЭ.

Однако наличие двух контуров охлаждения требует либо наличие двух внешних СО или одной внешней СО и внешнего устройства распределения потоков ОЖ между контурами, что приводит к усложнению схемы охлаждения ОУГ. Применение МЛД с охлаждающими каналами малого сечения и, в особенности, их последовательного соединения приводит к увеличению гидравлического сопротивления ОУГ. При использовании АЭ малого (по сравнению с шириной излучающей области МЛД) диаметра, значительная часть излучения накачки в него не попадет, а значительная часть попавшего в него излучения накачки не поглотится. Это приведет к снижению кпд доставки излучения накачки до АЭ и, как следствие, к уменьшению запасенной в инверсной населенности энергии. А также ОУГ с двумя контурами охлаждения содержит большое число деталей и имеет большие габариты и массу.

Задача, на решение которой направлено изобретение, - увеличение кпд ОУГ, а также снижение габаритов и массы.

Технический результат, получаемый при использовании предлагаемого технического решения, - уменьшение гидравлического сопротивления СО, упрощение схемы охлаждения, увеличение запасенной в инверсной населенности энергии.

Сущность первого варианта заключается в том, что в ОУГ с диодной накачкой, состоящей из размещенных в корпусе: АЭ в виде стержня, МЛД, расположенных равномерно на держателях и обращенных излучающей областью к АЭ, и СО, содержащей трубку, охватывающую АЭ с образованием кольцевого канала δ, каналы, расположенные в корпусе и каждом держателе, входной, выходной патрубки и выполненные в корпусе входной и выходной коллекторы, из которых выходят каналы, соединенные с поворотными каналами, выполненными в держателях, размещенных в отверстиях, выполненных на внешней поверхности корпуса, трубка выполнена из материала, прозрачного для излучения накачки, особенность заключается в том, что СО выполнена в виде единого контура и содержит дроссель с каналами, установленный между входным коллектором и кольцевым каналом, соединенные с входным и выходным патрубками входной и выходной дополнительные коллекторы, размещенные в одном из держателей, и каналы, выполненные в корпусе и соединяющие входной и выходной коллекторы с дополнительными входным и выходным коллекторами, диаметр поворотных каналов превышает диаметр каналов держателей, каналы дросселя соединяют входной коллектор с кольцевым каналом, который соединяется с выходным коллектором, дополнительные входной и выходной коллекторы соединены каналом держателя, а корпус выполнен в виде цилиндра.

Всей совокупностью перечисленных признаков обеспечивается оптимальный режим работы ОУГ. Этого добились за счет следующего: для охлаждения АЭ и МЛД используется один внешний контур охлаждения, для согласования гидравлического сопротивления канала охлаждения АЭ с гидравлическим сопротивлением каналов охлаждения МЛД в контуре охлаждения применен дроссель; отверстия в дросселе расположены равномерно по окружности, что позволяет получить равномерный поток ОЖ вдоль АЭ; диаметр поворотных каналов превышает диаметр основных каналов держателей; держатели взяли на себя функцию теплообменников МЛД. Таким образом, достигается уменьшение гидравлического сопротивления СО при упрощении схемы охлаждения, а также увеличение запасенной в инверсной населенности энергии и решается задача увеличения кпд ОУГ при снижении габаритов и массы всей конструкции.

Сущность второго варианта изобретения заключается в том, что в ОУГ с диодной накачкой, состоящей из размещенных в корпусе: АЭ в виде стержня, МЛД, расположенных равномерно на держателях и обращенных излучающей областью к АЭ, и СО, содержащей трубку, охватывающую АЭ с образованием кольцевого канала δ, каналы, расположенные в корпусе и каждом держателе, входной, выходной патрубки и выполненные в корпусе входной и выходной коллекторы, из которых выходят каналы, соединенные с поворотными каналами, выполненными в держателях, размещенных в отверстиях, выполненных на внешней поверхности корпуса, трубка выполнена из материала, прозрачного для излучения накачки, особенность заключается в том, что торцы АЭ закреплены в прижимах, установленных в корпусе, СО выполнена в виде единого контура и содержит каналы, выполненные в прижимах, входной и выходной дополнительные коллекторы, образованные прижимами, трубкой и АЭ, и каналы, выполненные в корпусе и соединяющие входной и выходной патрубки с входным и выходным коллекторами, которые соединяются с каналами прижимов, при этом диаметр поворотных каналов держателей превышает диаметр каналов держателей, каналы прижимов соединяются с дополнительными входным и выходным коллекторами, которые соединяются с кольцевым каналом, а корпус выполнен в виде цилиндра.

Принцип действия ОУГ по второму варианту аналогичен работе ОУГ по первому варианту. А достигаемый при этом технический результат такой же, как и при осуществлении устройства по первому варианту. Для повышения запасенной в инверсной населенности энергии ОУГ может быть снабжена размещенными напротив каждой МЛД отражателями, установленными в отверстиях корпуса на держателях.

Для повышения запасенной в инверсной населенности энергии каждая МЛД может быть снабжена линзой, установленной на поверхности МЛД, обращенной к АЭ.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога, позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения.

Следовательно, заявленное изобретение соответствует условию «новизна».

Для проверки соответствия заявленного изобретения условию «изобретательский уровень» заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного устройства. В результате поиска не выявлены технические решения с этими признаками. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На фиг. 1 представлен продольный разрез ОУГ по первому варианту.

На фиг. 2 представлен поперечный разрез ОУГ по первому варианту.

На фиг. 3 представлен дроссель.

На фиг. 4 представлен поперечный разрез ОУГ по первому варианту с линзами.

На фиг. 5 представлен продольный разрез ОУГ по второму варианту.

На фиг. 6 представлен поперечный разрез ОУГ второму варианту.

На фиг. 7 представлен разрез А-А на фиг. 5.

На фиг. 8 представлен поперечный разрез ОУГ по второму варианту с линзами и отражателями.

ОУГ с диодной накачкой по первому варианту (фиг. 1-3) содержит выполненный в виде полого цилиндра корпус 1, в котором установлен АЭ 2 в виде стержня, торцы которого закреплены в прижимах 3, 4, установленных в корпусе. На внешней поверхности корпуса 1 выполнены отверстия (не показаны) для размещения держателей 5 МЛД 6. МЛД 6 расположены равномерно на поверхности корпуса 1 и обращены к АЭ излучающей областью.

СО ОУГ выполнена в виде единого контура для охлаждения АЭ и МЛД. СО содержит трубку 7, охватывающую АЭ 2 с образованием кольцевого канала δ, входной и выходной патрубки 8, 9 и входной и выходной коллекторы 10, а также дополнительные входной и выходной коллекторы 11, дроссель 12 и каналы a, b, c, d, e, расположенные в корпусе 1, держателях 5 и дросселе 12 (фиг. 3). Трубка 7 выполнена из материала, прозрачного для излучения накачки (например: стекло, плавленый кварц, лейкосапфир и т.д.). Внешний диаметр и толщина трубки рассчитываются, исходя из требуемой фокусировки излучения накачки. Кольцевой канал δ формирует слой ОЖ, охлаждающий АЭ.

Дроссель 12 установлен между входным коллектором 10 и кольцевым каналом δ. Каналы с дросселя 12 соединяют входной коллектор 10 с кольцевым каналом δ, который в свою очередь соединяется с выходным коллектором 10.

Дополнительные входной и выходной коллекторы 11 размещены в одном из держателей 5 и соединяются с входным и выходным патрубками 8, 9. Между собой дополнительные коллекторы 11 соединены каналом b держателя.

Остальные держатели 5 снабжены поворотными каналами e, соединяющимися с каналами b держателей и каналами d корпуса 1, выходящими из входного и выходного коллекторов 10. При этом диаметр поворотных каналов e превышает диаметр каналов b держателей 5.

СО содержит выполненные в корпусе 1 каналы a, которые соединяют входной и выходной коллекторы 10 с дополнительными входным и выходным коллекторами 11.

Трубка 7 установлена в корпусе с помощью прижима 13.

Каждая МЛД 6 может быть снабжена линзой 14, установленной на поверхности МЛД, обращенной к АЭ 2 (фиг. 4).

ОУГ с диодной накачкой по второму варианту (фиг. 5-7) содержит выполненный в виде полого цилиндра корпус 1, в котором установлен АЭ 2 в виде стержня, торцы которого закреплены в прижимах 4, 15, установленных в корпусе 1. На внешней поверхности корпуса 1 выполнены отверстия (не показаны) для размещения держателей 5 МЛД 6, которые расположены равномерно на поверхности корпуса и обращены излучающей областью к АЭ 2.

СО ОУГ выполнена в виде единого контура для охлаждения АЭ и МЛД. СО содержит трубку 7, охватывающую АЭ 2 с образованием кольцевого канала δ, входной и выходной патрубки 8, 9 и входной и выходной коллекторы 10, а также дополнительные входной и выходной коллекторы 16 и охлаждающие каналы b, d, e, f, g, расположенные в корпусе 1, прижимах 15 и держателях 5. Трубка 7 выполнена из материала, прозрачного для излучения накачки (например: стекло, плавленый кварц, лейкосапфир и т.д.). Внешний диаметр и толщина трубки рассчитываются, исходя из требуемой фокусировки излучения накачки. Кольцевой канал δ формирует слой ОЖ, охлаждающий АЭ. Входной и выходной патрубки 8, 9, благодаря наличию свободного пространства между держателями 5, расположены непосредственно на корпусе 1. Это позволяет уменьшить гидравлическое сопротивление ОУГ и упростить ее конструкцию (по сравнению с первым вариантом).

Трубка 7 установлена в корпусе с помощью прижимов 15.

Дополнительные входной и выходной коллекторы 16 образованы прижимами 15, трубкой 7 и АЭ 2. Каналы g прижимов 15 соединятся с входным и выходным коллекторами 10 и с дополнительными входным и выходным коллекторами 16 (фиг. 7), которые в свою очередь соединяются с кольцевым каналом δ. Прижимы 15 с каналами g позволяют более точно распределять потоки ОЖ между каналами охлаждения МЛД и АЭ, а также не оказывают механического воздействия на АЭ (по сравнению с дросселем 12 в конструкции по первому варианту).

Держатели 5 МЛД 6 снабжены поворотными каналами е, соединяющимися с каналами b держателей и каналами d корпуса 1, выходящими из входного и выходного коллекторов 10 корпуса. При этом диаметр поворотных каналов e превышает диаметр каналов b держателей 5.

Контур охлаждения содержит выполненные в корпусе 1 каналы f, которые соединяют входной и выходной коллекторы 10 с входным и выходным патрубками 8, 9.

Каждая МЛД 6 может быть снабжена линзой 14, установленной на поверхности МЛД 6, обращенной к АЭ 2 (фиг. 8). ОУГ может быть снабжена отражателями 17, установленными в отверстиях корпуса 1 на держателях 18, и размещенными напротив каждой МЛД 6.

Устройство по первому варианту работает следующим образом. На МЛД 6 подается напряжение питания, МЛД 6 начинают генерировать излучение накачки, которое, проходя трубку 7 и ОЖ кольцевого канала δ, поглощается АЭ 2, где часть поглощенной энергии накачки идет на тепловые потери. В непрерывном режиме работы мощность тепловыделения достаточно высока, поэтому требуется охлаждение АЭ 2. В МЛД 6 часть электрической энергии тратится на тепловые потери, поэтому их также необходимо охлаждать. Охлаждение АЭ и МЛД происходит следующим образом.

ОЖ подается через входной патрубок 8 в ОУГ и поступает в дополнительный входной коллектор 11. Затем ОЖ разделяется на два потока - первый поступает в канал b держателя 5, проходя по которому охлаждает МЛД 6, и попадает в выходной дополнительный коллектор 11, а второй поток, проходя по каналу а корпуса, попадает во входной коллектор 10.

Во входном коллекторе 10 ОЖ разделяется на два потока - первый охлаждает АЭ 2, а второй МЛД 6. Количественное соотношение между этими двумя потоками ОЖ задается гидравлическим сопротивлением каналов с дросселя 12.

Первый поток ОЖ из входного коллектора 10 через каналы с дросселя 12 попадает в кольцевой канал δ и проходит вдоль АЭ 2, контактируя с его поверхностью и охлаждает его. Пройдя вдоль АЭ 2, ОЖ на противоположном его конце попадает в выходной коллектор 10 и через канал a корпуса в выходной дополнительный коллектор 11, затем через выходной патрубок 9 выводится из ОУГ.

Второй поток ОЖ из входного коллектора 10 через выполненные в корпусе 1 каналы d попадает в поворотные каналы e держателей, проходит по каналам b держателей, попадая на выходе в аналогичные поворотные каналы е и через каналы d, выходной коллектор 10, каналы а и выходной дополнительный коллектор 11 выводится из оптической усилительной головки. ОЖ, проходя по каналам b держателей 5, охлаждает МЛД.

Для дополнительной фокусировки излучения накачки (повышение кпд) используются линзы 14 (фиг 4).

Устройство по второму варианту работает следующим образом. На МЛД 6 подается напряжение питания, МЛД начинают генерировать излучение накачки, которое, проходя трубку 7 и ОЖ кольцевого канала δ, поглощается АЭ 2, где часть поглощенной энергии накачки идет на тепловые потери. В непрерывном режиме работы мощность тепловыделения достаточно высока, поэтому требуется охлаждение АЭ 2. В МЛД 6 часть электрической энергии тратится на тепловые потери, поэтому их также необходимо охлаждать. Охлаждение АЭ и МЛД происходит следующим образом.

ОЖ подается через входной патрубок 8 в ОУГ и поступает через канал f корпуса 1 во входной коллектор 10. Затем ОЖ разделяется на два потока - первый поступает в каналы g прижима 15, а второй - в каналы держателей 5. Количественное соотношение между этими двумя потоками ОЖ задается гидравлическим сопротивлением каналов g прижима 15.

Из каналов g прижима 15 через дополнительный входной коллектор 16 ОЖ попадает в кольцевой канал δ охлаждения АЭ 2. Проходя вдоль АЭ 2, ОЖ контактирует с его поверхностью и охлаждает его. Пройдя вдоль АЭ 2, ОЖ на противоположном его конце попадает в выходной дополнительный коллектор 16 и через каналы g прижима 15 в выходной коллектор 10, откуда через каналы f корпуса в выходной патрубок 9 и выводится из ОУГ.

Второй поток из входного коллектора 10 через каналы d корпуса 1 попадает в поворотные каналы e держателей 5, проходит по каналам b держателей, попадая на выходе в аналогичные поворотные каналы е и через каналы d корпуса, выходной коллектор 10 и каналы f выводится из ОУГ через выходной патрубок 9. ОЖ, проходя по каналам b держателей 5, охлаждает МЛД 6.

Для дополнительной фокусировки излучения накачки (повышение кпд) могут использоваться линзы 14 (фиг. 8).

Часть излучения накачки, не поглотившаяся в АЭ 2 и прошедшая сквозь него, может быть возвращена обратно отражателями 17 (фиг. 8). При этом профиль отраженного излучения накачки задается формой отражающей поверхности отражателей 17 и трубкой 7.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в электронной и оптико-механической промышленности при изготовлении устройств с повышенной мощностью для медицины, технологии и других целей;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».


ОПТИЧЕСКАЯ УСИЛИТЕЛЬНАЯ ГОЛОВКА С ДИОДНОЙ НАКАЧКОЙ (ВАРИАНТЫ)
ОПТИЧЕСКАЯ УСИЛИТЕЛЬНАЯ ГОЛОВКА С ДИОДНОЙ НАКАЧКОЙ (ВАРИАНТЫ)
ОПТИЧЕСКАЯ УСИЛИТЕЛЬНАЯ ГОЛОВКА С ДИОДНОЙ НАКАЧКОЙ (ВАРИАНТЫ)
ОПТИЧЕСКАЯ УСИЛИТЕЛЬНАЯ ГОЛОВКА С ДИОДНОЙ НАКАЧКОЙ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 351-360 of 706 items.
04.10.2018
№218.016.8e71

Оптическая система наведения

Оптическая система наведения может быть использована в астрономии и для систем лазерной локации космического мусора. Оптическая система наведения содержит платформу, имеющую возможность поворота вокруг вертикальной оси системы, с горизонтально установленным на этой платформе...
Тип: Изобретение
Номер охранного документа: 0002668647
Дата охранного документа: 02.10.2018
11.10.2018
№218.016.9047

Энергонезависимый транспондер

Изобретение относится к области дистанционной идентификации и контроля охраняемых и особо охраняемых объектов с повышенными требованиями к обеспечению их безопасности. Техническим результатом является создание энергонезависимого транспондера с датчиками контроля состояния охраняемого объекта и...
Тип: Изобретение
Номер охранного документа: 0002669203
Дата охранного документа: 09.10.2018
28.10.2018
№218.016.979e

Установка для снятия металлических покрытий (варианты)

Изобретение относится к устройствам для снятия металлических покрытий методом катодного распыления в вакууме с наружных и внутренних поверхностей изделий. Установка для снятия металлических покрытий содержит установленные в вакуумной камере обрабатываемое изделие-катод, в котором размещены...
Тип: Изобретение
Номер охранного документа: 0002670958
Дата охранного документа: 26.10.2018
01.11.2018
№218.016.9915

Пластичный взрывчатый состав

Изобретение относится к взрывчатому составу, обладающему пластичными свойствами, предназначенному для производства тонкослойных зарядов разнообразной геометрической формы различного назначения, в частности тонкослойных пластин, лент. Взрывчатый состав содержит бризантное взрывчатое вещество -...
Тип: Изобретение
Номер охранного документа: 0002671340
Дата охранного документа: 30.10.2018
14.11.2018
№218.016.9d3a

Таблетка для изготовления тепловыделяющего элемента ядерного реактора на быстрых нейтронах

Изобретение относится к ядерной технике, в частности к ядерному горючему и способам изготовления дисперсионных топливных таблеток тепловыделяющих элементов. Таблетка для изготовления тепловыделяющего элемента ядерного реактора на быстрых нейтронах содержит равномерно распределенные по объему...
Тип: Изобретение
Номер охранного документа: 0002672256
Дата охранного документа: 13.11.2018
17.11.2018
№218.016.9e35

Способ изготовления светопоглощающих элементов оптических систем на стальных подложках

Изобретение относится к области гальванотехники и может быть использовано для изготовления светопоглощающих элементов оптических электронных приборов и оптических систем зеркал, телескопов космических аппаратов. Способ включает предварительную подготовку стальной подложки, обезжиривание и...
Тип: Изобретение
Номер охранного документа: 0002672655
Дата охранного документа: 16.11.2018
17.11.2018
№218.016.9e55

Способ формирования спектров случайной вибрации

Данное изобретение имеет отношение к испытательной технике, а именно к способам формирования спектров случайной вибрации, и может быть использовано в машиностроении. Технический результат, заключающийся в сокращении времени на проведение испытаний крупногабаритных объектов в не менее чем двух...
Тип: Изобретение
Номер охранного документа: 0002672529
Дата охранного документа: 15.11.2018
17.11.2018
№218.016.9e6e

Устройство измерения частотной погрешности термоэлектрических преобразователей

Изобретение относится к измерительной технике и может быть использовано для частотной погрешности бесконтактных термоэлектрических преобразователей, применяемых для измерения высокочастотного тока, наведенного в цепях электрического задействования пиротехнических и взрывных устройств объекта...
Тип: Изобретение
Номер охранного документа: 0002672533
Дата охранного документа: 15.11.2018
17.11.2018
№218.016.9e72

Оптическое устройство обнаружения объектов

Изобретение относится к области определения местоположения. Оптическое устройство обнаружения объектов содержит оптоэлектронный блок, источники света в составе передающей оптической системы с полем излучения, объектив с полем зрения, зеркало, размещенное перед передающей оптической системой и...
Тип: Изобретение
Номер охранного документа: 0002672528
Дата охранного документа: 15.11.2018
21.11.2018
№218.016.9f62

Способ определения коэффициентов трения скольжения и покоя

Изобретение относится к области механических испытаний материалов, в частности к определению коэффициента трения между образцами. Сущность: один из образцов, закрепляемый неподвижно, изготавливают с рабочей поверхностью, имеющей прямолинейную или вогнутую круговую форму. На некотором расстоянии...
Тип: Изобретение
Номер охранного документа: 0002672809
Дата охранного документа: 19.11.2018
Showing 261-264 of 264 items.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
12.07.2018
№218.016.6fed

Способ настройки резонатора лазерного излучателя

Изобретение относится к лазерной технике, а именно к способам настройки оптических резонаторов, содержащих выходное и заднее зеркала с плоскими либо со сферическими рабочими поверхностями и уголковый отражатель, и может быть использовано при создании лазерной техники и оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002660778
Дата охранного документа: 09.07.2018
21.03.2019
№219.016.eb3e

Излучатель лазера

Излучатель лазера содержит установленные на основание блок резонаторных зеркал, уголковый отражатель, блок лазерного вещества, регулятор расходимости излучения, содержащий как минимум одну линзу, и первый двухзеркальный отражатель, на котором установлен второй двухзеркальный отражатель. Зеркала...
Тип: Изобретение
Номер охранного документа: 0002682560
Дата охранного документа: 19.03.2019
11.07.2019
№219.017.b281

Корпус лазера

Изобретение относится к лазерной технике, а именно к несущим элементам конструкций, а также к системам охлаждения и термостабилизации, и может быть использовано при создании лазеров различных типов. Корпус лазера выполнен составным из двух полукорпусов, между которыми расположена пластина, и...
Тип: Изобретение
Номер охранного документа: 0002694120
Дата охранного документа: 09.07.2019
+ добавить свой РИД