×
13.01.2017
217.015.6e93

Результат интеллектуальной деятельности: ЛОПАТКА РАБОЧЕГО КОЛЕСА РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиадвигателестроения. Лопатка рабочего колеса второй ступени ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), содержащего рабочее колесо с диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией. Лопатка содержит хвостовик и перо с выпукло-вогнутым профилем. Перо лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки профиля хордой и фронтальной линией решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γ = (68,8÷74,8)°. Лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом G = (207,3÷297,9) [град/м]. Перо лопатки выполнено с входной и выходной кромками, расходящимися к периферийному торцу с градиентом увеличения хорды G = (6,6÷9,5)·10 [м/м]. Перо лопатки выполнено переменной по ширине и высоте пера толщиной. Максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом G = (1,54÷2,2)·10 [м/м]. Технический результат состоит в улучшении геометрической конфигурации, пространственной жесткости, силовых и аэродинамических параметров лопатки рабочего колеса второй ступени вала ротора КНД ТРД, а также в повышении КПД и расширении диапазона режимов ГДУ компрессора при повышении ресурса лопатки. 4 н. и 21 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к осевым компрессорам низкого давления авиационных турбореактивных двигателей.

Известна профилированная лопатка компрессора для диска рабочего колеса, имеющего аксиальную, тангенциальную и радиальную ортогональные оси, содержащая стороны повышенного и низкого давления, простирающиеся в радиальном направлении от хвостовика к вершине и в аксиальном направлении между передней и задней кромками, поперечные сечения, имеющие соответствующие хорды и линии изгиба, проходящие между передней и задней кромками, и центры тяжести, выровненные по оси укладки, имеющей двойной изгиб. Сторона низкого давления изогнута вдоль задней кромки вблизи хвостовика для уменьшения разделения потока на нем (RU 2000130594 A, опубл. 27.01.2003).

Известна рабочая лопатка компрессора, включающая перо и хвостовик. Хвостовик лопатки расположен горизонтально, а перо соединено с хвостовиком через промежуточный элемент - ножку. Между ножкой и пером размещена полка, формирующая проточную часть двигателя (Н.Н. Сиротин, А.С. Новиков, А.Г. Пайкин, А.Н. Сиротин. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва. Наука 2011. стр. 257-263).

К недостаткам известных решений относятся неопределенность достижения эффективного взаимодействия лопаток с потоком рабочего тела вследствие отсутствия конкретизации диапазонов геометрических и аэродинамических параметров пространственной конфигурации пера и угловой установки лопатки в рабочем колесе второй ступени ротора, а также сложность получения компромиссного сочетания повышенных значений КПД, газодинамической устойчивости (ГДУ) компрессора и, как следствие, сложность обеспечения оптимальной динамической прочности и повышенного ресурса лопатки.

Задача группы изобретений состоит в разработке лопатки рабочего колеса второй ступени ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД) с улучшенными конструктивными и аэродинамическими параметрами пространственной конфигурации и жесткостью пера лопатки, обеспечивающими возможность увеличения расхода сжимаемого рабочего тела - воздуха - во второй ступени и подачи воздушного потока в последующие ступени КНД на всех режимах работы двигателя, а также увеличение газодинамической устойчивости и ресурса без увеличения материалоемкости лопатки.

Поставленная задача решается тем, что лопатка второй ступени ротора компрессора низкого давления турбореактивного двигателя, содержащего корпус с проточной частью и рабочее колесо второй ступени с диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией, согласно изобретению содержит хвостовик и перо с выпукло-вогнутым профилем, образованным вогнутым корытом и выпуклой спинкой, сопряженными входной и выходной кромками, причем перо лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки профиля хордой и фронтальной линией решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γк = (68,8÷74,8)°, а хвостовик лопатки имеет подошву с продольной осью, расположенной в условной плоскости, параллельной оси ротора, с отклонением от последней в проекции на указанную плоскость на угол, соответствующий углу установки профиля пера к оси ротора в корневом сечении, кроме того, лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gу.п, имеющим значения в диапазоне

Gу.п = (γкп)/Нср = (207,3÷297,9) [град/м],

где γк - угол установки профиля пера лопатки в корневом сечении; γп - то же в периферийном сечении; Нср - средняя высота пера лопатки; при этом входная и выходная кромки пера выполнены расходящимися к периферийному торцу лопатки с градиентом Gу.х увеличения соединяющей их хорды, равным

Gу.х = (Lп.х-Lк.х)/Hcp = (6,6÷9,5)·10-2 [м/м],

где Lп.х - длина периферийной хорды, соединяющей входную и выходную кромки пера лопатки в условной плоскости, перпендикулярной к оси пера лопатки; Lк.х - то же, длина корневой хорды; Нср - средняя высота пера лопатки; причем лопатка выполнена с отношением высоты h входной кромки профиля пера к средней хорде Lcp, разделяющей площадь рабочей поверхности профиля на две равные части, составляющим h/Lcp = (2,4÷3,5).

При этом перо лопатки может быть выполнено переменной по ширине и высоте пера толщиной, определяемой в поперечном сечении как разность высот спинки и корыта относительно хорды, соединяющей входную и выходную кромки пера лопатки, при этом максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т, равным

Gу.т = (Скп)/Нср = (1,5÷2,2)·10-2 [м/м],

где Ск - максимальная толщина корневого сечения профиля пера лопатки; Сп - то же, периферийного сечения; Нср - средняя высота пера лопатки.

Лопатка может быть снабжена с двух сторон пера антивибрационной полкой, расположенной в зоне одной трети высоты пера от периферийного торца пера лопатки, а хвостовик лопатки снабжен канавкой для фиксации лопатки в диске от смещения хвостовика вдоль оси паза разрезным контровочным кольцом.

Перо лопатки может быть выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом профиля, обращенным вогнутостью в сторону вращения ротора против часовой стрелки (вид по н.п. - направлению полета), и выпуклой спинкой пера, обращенной выпуклостью в сторону против вращения ротора и в направлении вращения часовой стрелки.

Вариатно перо лопатки может быть выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом, обращенным вогнутостью в сторону вращения ротора по часовой стрелке (вид по н.п.), и выпуклой спинкой пера, обращенной выпуклостью в сторону против вращения ротора и против направления вращения часовой стрелки (вид по н.п.).

Периферийный торец пера лопатки может быть выполнен скошенным с повторением кривизны внутренней поверхности проточной части двигателя в зоне второй ступени КНД с уменьшением радиуса в направлении потока рабочего тела с высотой, достаточной для беспрепятственного вращения лопатки рабочего колеса в составе ротора КНД двигателя.

Поставленная задача по второму варианту решается тем, что лопатка второй ступени ротора компрессора низкого давления турбореактивного двигателя, содержащего корпус с проточной частью и рабочее колесо второй ступени с диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией, согласно изобретению содержит хвостовик и перо с выпукло-вогнутым профилем, образованным вогнутым корытом и выпуклой спинкой, сопряженными входной и выходной кромками, причем перо лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки профиля хордой и фронтальной линией решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γк = (68,8÷74,8)°, а хвостовик лопатки имеет подошву с продольной осью, расположенной в условной плоскости, параллельной оси ротора, с отклонением от последней в проекции на указанную плоскость на угол, соответствующий углу установки профиля пера к оси ротора в корневом сечении, при этом лопатка выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gу.п, имеющим значения в диапазоне

Gу.п = (γкп)/Нср = (207,3÷297,9) [град/м],

где γк - угол установки профиля пера лопатки, в корневом сечении; γп - то же в периферийном сечении; Нср - средняя высота пера лопатки, кроме того, входная и выходная кромки пера выполнены расходящимися к периферийному торцу лопатки, а лопатка выполнена с отношением высоты h входной кромки профиля пера к средней хорде Lcp, разделяющей площадь рабочей поверхности профиля на две равные части, составляющим h/Lcp = (2,4÷3,5).

При этом входная и выходная кромки пера могут быть выполнены расходящимися к периферийному торцу лопатки с градиентом Gу.х увеличения соединяющей их хорды, равным

Gу.х = (Lп.х-Lк.х)/Hcp = (6,6÷9,5)·10-2 [м/м],

где Lп.х - длина периферийной хорды, соединяющей входную и выходную кромки пера лопатки в условной плоскости, перпендикулярной к оси пера лопатки; Lк.х - то же, длина корневой хорды; Нср - средняя высота пера лопатки.

Лопатка может быть снабжена с двух сторон пера антивибрационной полкой, расположенной в зоне одной трети высоты пера от периферийного торца пера лопатки, а хвостовик лопатки снабжен канавкой для фиксации лопатки в диске от смещения хвостовика вдоль оси паза разрезным контровочным кольцом.

Перо лопатки может быть выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом профиля, обращенным вогнутостью в сторону вращения ротора против часовой стрелки (вид по н.п. - направлению полета), и выпуклой спинкой пера, обращенной выпуклостью в сторону против вращения ротора и в направлении вращения часовой стрелки.

Вариантно перо лопатки может быть выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом, обращенным вогнутостью в сторону вращения ротора по часовой стрелке (вид по н.п.), и выпуклой спинкой пера, обращенной выпуклостью в сторону против вращения ротора и против направления вращения часовой стрелки (вид по н.п.).

Периферийный торец пера лопатки может быть выполнен скошенным с повторением кривизны внутренней поверхности проточной части двигателя в зоне второй ступени КНД с уменьшением радиуса в направлении потока рабочего тела с высотой, достаточной для беспрепятственного вращения лопатки рабочего колеса в составе ротора КНД двигателя.

Поставленная задача по третьему варианту решается тем, что лопатка второй ступени ротора компрессора низкого давления турбореактивного двигателя, содержащего корпус с проточной частью и рабочее колесо второй ступени с диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией, согласно изобретению содержит хвостовик и перо с выпукло-вогнутым профилем, образованным вогнутым корытом и выпуклой спинкой, сопряженными входной и выходной кромками, причем перо лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки профиля хордой и фронтальной линией решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γк = (68,8÷74,8)°, а хвостовик лопатки имеет подошву с продольной осью, расположенной в условной плоскости, параллельной оси ротора, с отклонением от последней в проекции на указанную плоскость на угол, соответствующий углу установки профиля пера к оси ротора в корневом сечении, причем входная и выходная кромки пера выполнены расходящимися к периферийному торцу лопатки с градиентом Gу.х увеличения соединяющей их хорды, равным

Gу.х = (Lп.х-Lк.х)/Hcp = (6,6÷9,5)·10-2 [м/м],

где Lп.х - длина периферийной хорды, соединяющей входную и выходную кромки пера лопатки в условной плоскости, перпендикулярной к оси пера лопатки; Lк.х - то же, длина корневой хорды; Нср - средняя высота пера лопатки; кроме того, лопатка выполнена с отношением высоты h входной кромки профиля пера к средней хорде Lcp, разделяющей площадь рабочей поверхности профиля на две равные части, составляющим h/Lcp = (2,4÷3,5).

При этом лопатка может быть выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gу.п, имеющим значения в диапазоне

Gу.п = (γкп)/Нср = (207,3÷297,9) [град/м],

где γк - угол установки профиля пера лопатки в корневом сечении; γп - то же в периферийном сечении; Нср - средняя высота пера лопатки.

Перо лопатки может быть выполнено переменной по ширине и высоте пера толщиной, определяемой в поперечном сечении как разность высот спинки и корыта относительно хорды, соединяющей входную и выходную кромки пера лопатки, при этом максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т, равным

Gу.т = (Скп)/Нср = (1,5÷2,2)·10-2 [м/м],

где Ск - максимальная толщина корневого сечения профиля пера лопатки; Сп - то же, периферийного сечения; Нср - средняя высота пера лопатки.

Лопатка может быть снабжена с двух сторон пера антивибрационной полкой, расположенной в зоне одной трети высоты пера от периферийного торца пера лопатки, а хвостовик лопатки снабжен канавкой для фиксации лопатки в диске от смещения хвостовика вдоль оси паза разрезным контровочным кольцом.

Перо лопатки может быть выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом профиля, обращенным вогнутостью в сторону вращения ротора против часовой стрелки (вид по н.п. - направлению полета), и выпуклой спинкой пера, обращенной выпуклостью в сторону против вращения ротора и в направлении вращения часовой стрелки.

Вариантно перо лопатки может быть выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом, обращенным вогнутостью в сторону вращения ротора по часовой стрелке (вид по н.п.), и выпуклой спинкой пера, обращенной выпуклостью в сторону против вращения ротора и против направления вращения часовой стрелки (вид по н.п.).

Периферийный торец пера лопатки может быть выполнен скошенным с повторением кривизны внутренней поверхности проточной части двигателя в зоне второй ступени КНД с уменьшением радиуса в направлении потока рабочего тела с высотой, достаточной для беспрепятственного вращения лопатки рабочего колеса в составе ротора КНД двигателя.

Поставленная задача по четвертому варианту решается тем, что лопатка второй ступени ротора компрессора низкого давления турбореактивного двигателя, содержащего корпус с проточной частью и рабочее колесо второй ступени с диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией, согласно изобретению содержит хвостовик и перо с выпукло-вогнутым профилем, образованным вогнутым корытом и выпуклой спинкой, сопряженными входной и выходной кромками, причем перо лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки профиля хордой и фронтальной линией решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γк = (68,8÷74,8)°, а хвостовик лопатки имеет подошву с продольной осью, расположенной в условной плоскости, параллельной оси ротора, с отклонением от последней в проекции на указанную плоскость на угол, соответствующий углу установки профиля пера к оси ротора в корневом сечении, кроме того, перо лопатки выполнено переменной по ширине и высоте пера толщиной, определяемой в поперечном сечении как разность высот спинки и корыта относительно условной хорды, соединяющей кромки пера лопатки, при этом максимальная толщина профиля пера лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера к периферийному торцу с градиентом Gу.т, равным

Gу.т = (Скп)/Нср = (1,5÷2,2)·10-2 [м/м],

где Ск - максимальная толщина корневого сечения профиля пера лопатки; Сп - то же, периферийного сечения; Нср - средняя высота пера лопатки.

Лопатка может быть выполнена с переменным по высоте пера углом γ установки профиля пера относительно фронтальной линии решетки профилей лопаточного венца, убывающим с радиальным удалением от оси ротора с градиентом Gу.п, имеющим значения в диапазоне

Gу.п = (γкп)/Нср = (207,3÷297,9) [град/м],

где γк - угол установки профиля пера лопатки в корневом сечении; γп - то же в периферийном сечении; Нср - средняя высота пера лопатки.

Входная и выходная кромки пера могут быть выполнены расходящимися к периферийному торцу лопатки с градиентом Gу.х увеличения соединяющей их хорды, равным

Gу.х = (Lп.х-Lк.х)/Нср = (6,6÷9,5)·10-2 [м/м],

где Lп.х - длина периферийной хорды, соединяющей входную и выходную кромки пера лопатки в условной плоскости, перпендикулярной к оси пера лопатки; Lк.х - то же, длина корневой хорды; Нср - средняя высота пера лопатки.

Лопатка может быть снабжена с двух сторон пера антивибрационной полкой, расположенной в зоне одной трети высоты пера от периферийного торца пера лопатки, а хвостовик лопатки снабжен канавкой для фиксации лопатки в диске от смещения хвостовика вдоль оси паза разрезным контровочным кольцом.

Перо лопатки может быть выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом профиля, обращенным вогнутостью в сторону вращения ротора против часовой стрелки (вид по н.п. - направлению полета), и выпуклой спинкой пера, обращенной выпуклостью в сторону против вращения ротора и в направлении вращения часовой стрелки.

Периферийный торец пера лопатки может быть выполнен скошенным с повторением кривизны внутренней поверхности проточной части двигателя в зоне второй ступени КНД с уменьшением радиуса в направлении потока рабочего тела с высотой, достаточной для беспрепятственного вращения лопатки рабочего колеса в составе ротора КНД двигателя.

Технический результат, достигаемый приведенной совокупностью существенных признаков лопатки рабочего колеса второй ступени ротора КНД ТРД, заключается в повышении КПД и расширении диапазона режимов газодинамической устойчивости компрессора на 2,4% при повышении ресурса лопатки в 2 раза.

Сущность изобретения поясняется чертежами, где

на фиг. 1 изображена лопатка рабочего колеса второй ступени, вид сбоку;

на фиг. 2 - лопатка рабочего колеса второй ступени, фронтальная проекция;

на фиг. 3 - перо лопатки рабочего колеса второй ступени, поперечный разрез;

на фиг. 4 - лопатка рабочего колеса второй ступени, вид сверху.

Рабочее колесо второй ступени ротора компрессора низкого давления турбореактивного двигателя, содержащего корпус с проточной частью, снабжено диском, наделенным пазами, и лопаточным венцом, имеющим решетку профилей пера с фронтальной линией.

Лопатка рабочего колеса содержит хвостовик 1 и перо 2 с выпукло-вогнутым профилем, образованным вогнутым корытом 3 и выпуклой спинкой 4, сопряженными входной и выходной кромками 5 и 6 соответственно. Перо 2 лопатки выполнено с углом γ установки профиля, определенным как угол между соединяющей входную и выходную кромки 5 и 6 профиля хордой 7 и фронтальной линией 8 решетки лопаточного венца, имеющий в проекции на условную плоскость, перпендикулярную к оси пера, в корневом сечении профиля значение γк = (68,8÷74,8)°. В качестве соединяющей входную и выходную кромки профиля хорды 7 принята общая касательная к входной и выходной кромкам 5 и 6 профиля пера 2 лопатки. Хвостовик 1 лопатки имеет подошву 9 с продольной осью, расположенной в условной плоскости, параллельной оси 10 ротора, с отклонением от последней в проекции на указанную плоскость на угол αк = (15÷23)°, соответствующий углу установки профиля пера к оси ротора в корневом сечении. В качестве оси пера 2 лопатки принята продольная ось профиля пера, совпадающая с осью закрутки профиля. В качестве оси 10 ротора принята ось вращения ротора.

Лопатка выполнена с переменным по высоте пера 2 углом γ установки профиля пера относительно фронтальной линии 8 решетки профилей лопаточного венца, убывающим с радиальным удалением от оси 10 ротора с градиентом Gу.п, имеющим значения в диапазоне

Gу.п = (γкп)/Hcp = (207,3÷297,9) [град/м],

где γк - угол установки профиля пера лопатки в корневом сечении; γп - то же в периферийном сечении; Нср - средняя высота пера лопатки.

Входная и выходная кромки 5 и 6 пера 2 выполнены расходящимися к периферийному торцу 11 лопатки с градиентом Gу.х увеличения соединяющей их хорды 7, равным

Gу.х = (Lп.х-Lк.х)/Hcp = (6,6÷9,5)·10-2 [м/м],

где Lп.х - длина периферийной хорды, соединяющей входную и выходную кромки пера лопатки в условной плоскости, перпендикулярной к оси пера лопатки; Lк.х - то же, длина корневой хорды; Нср - средняя высота пера лопатки.

Лопатка выполнена с отношением высоты h входной кромки 5 профиля пера 2 к средней хорде Lcp, разделяющей площадь рабочей поверхности профиля на две равные части, составляющим h/Lcp = (2,4÷3,5).

Перо 2 лопатки выполнено переменной по ширине и высоте пера толщиной, определяемой в поперечном сечении как разность высот спинки 4 и корыта 3 относительно хорды 7, соединяющей входную и выходную кромки 5 и 6 пера 2 лопатки. Максимальная толщина профиля пера 2 лопатки выполнена наибольшей в корневом сечении и убывающей по высоте пера 2 к периферийному торцу 11 с градиентом Gу.т, равным

Gу.т = (Скп)/Нср = (1,5÷2,2)·10-2 [м/м],

где Ск - максимальная толщина корневого сечения профиля пера лопатки; Сп - то же, периферийного сечения; Нср - средняя высота пера лопатки.

Лопатка снабжена с двух сторон пера антивибрационной полкой 12, расположенной в зоне одной трети высоты пера 2 от периферийного торца 11 пера 2 лопатки. Хвостовик 1 лопатки снабжен канавкой 13 для фиксации лопатки в диске от смещения хвостовика вдоль оси паза разрезным контровочным кольцом, заводимым в канавку 13 хвостовика и ответные ей канавки, выполненные в ободе диска между пазами. Групповую фиксацию всех лопаток рабочего колеса производят одним контровочным кольцом.

Перо 2 лопатки выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом 3, обращенным вогнутостью в сторону вращения ротора против часовой стрелки (вид по н.п. - направлению полета), и выпуклой спинкой 4 пера, обращенной выпуклостью в сторону против вращения ротора и в направлении вращения часовой стрелки.

Вариантно перо 2 лопатки выполнено с выпукло-вогнутым профилем, образованным вогнутым корытом 3 профиля, обращенным вогнутостью в сторону вращения ротора по часовой стрелке (вид по н.п.), и выпуклой спинкой 4 пера, обращенной выпуклостью в сторону против вращения ротора и против направления вращения часовой стрелки (вид по н.п.).

Периферийный торец 11 пера 2 лопатки выполнен скошенным с повторением кривизны внутренней поверхности проточной части двигателя в зоне второй ступени КНД с уменьшением радиуса в направлении потока рабочего тела с высотой, достаточной для беспрепятственного вращения лопатки рабочего колеса в составе ротора КНД двигателя.

Лопатку рабочего колеса второй ступени ротора КНД ТРД поэтапно изготавливают из прутка авиационного сплава. На первом этапе отрезают фрагмент прутка требуемой длины, из которого электровысадкой с последующей механической обработкой выполняют заготовку лопатки с локальными утолщениями на участках расположения хвостовика 1 и антивибрационной полки 12. На следующем этапе заготовку подвергают общему нагреву в электропечи до состояния термопластичности и выполняют горячую объемную штамповку, используя штамп, состоящий из двух ответно профилированных полуматриц. Рабочая поверхность одной из полуматриц штампа включает участок, форма которого выполнена ответной пространственной поверхности спинки 4 пера 2 лопатки. Рабочая поверхность другой полуматрицы штампа включает участок, форма которого выполнена ответной пространственной поверхности корыта 3 пера 2 лопатки. После чего лопатку подвергают механической обработке, включая обдирку облоя фрезерованием, протягивание хвостовика 1.

Доводку обтекаемых поверхностей профилей пера 2 и антивибрационной полки 12 производят фрезерованием с последующей полировкой. Контактные торцы 14 антивибрационной полки 12 упрочняют, нанося на них высокопрочный слой.

Изготовленная таким образом лопатка состоит из объединенных в одно целое перо 2 с хвостовиком 1 и антивибрационной полкой 12, выполненной как сегмент сборного кольца лопаточного венца рабочего колеса второй ступени ротора КНД ТРД.

Профиль пера 2 лопатки имеет следующие геометрические параметры:

- в корневом сечении профиль пера лопатки выполнен с максимальной толщиной профиля Cmax = 5,2 мм; длина хорды пера - 55,2 мм; угол γк установки профиля пера между соединяющей входную и выходную кромки 5 и 6 профиля хордой 7 и фронтальной линией 8 решетки лопаточного венца составляет 71°; угол αк установки профиля пера 2 к оси вращения ротора составляет 19°;

- в периферийном сечении профиль пера лопатки выполнен с максимальной толщиной профиля Cmax = 2,2 мм; длина хорды пера принята 68,6 мм; угол γп установки профиля пера составляет 24°;

- средняя высота Нср профиля пера составляет 181,5 мм. Антивибрационная полка 12 лопатки выполнена с толщиной стенки 4,5 мм и размещена на среднем радиусе от оси ротора 367 мм, с контактными поверхностями, выполненными под углом 29° к оси вращения ротора в проекции на осевую плоскость последнего, нормальную к оси пера лопатки.

Лопатка выполнена для фиксации на диске рабочего колеса вала ротора путем установки хвостовика 1 в пазу обода диска.

При работе компрессора каждая лопатка рабочего колеса второй ступени ротора КНД взаимодействует с рабочим телом, передавая последнему кинетическую и потенциальную энергию. В результате возникает направленный к выходу из лопаточного венца рабочего колеса поток сжимаемого рабочего тела, который поступает из межлопаточных каналов лопаточного венца рабочего колеса ротора на лопатки и в межлопаточные каналы направляющего аппарата статора второй ступени. После выравнивания в направляющем аппарате поток поступает в последующие ступени КНД.

В процессе реализации разработанной в изобретении конструкции лопатки рабочего колеса второй ступени ротора КНД технический результат достигается только при установке лопатки в рабочем колесе с ориентацией профиля пера 2 под углом γ между соединяющей входную и выходную кромки 5 и 6 профиля хордой 7 и фронтальной линией 8 решетки лопаточного венца, составляющим в корневом сечении γк = (68,8÷74,8)°, в сочетании с одновременным согласованным удовлетворением условий соответствия найденных в изобретении геометрических и аэродинамических параметров пространственной конфигурации и градиентов их изменения по высоте пера лопатки. При назначении угла γк в корневом сечении лопатки, принятом из найденного в изобретении интервала значений γк с учетом углов установки профиля пера предыдущей и последующих ступеней ротора компрессора, достигают наиболее высокие значения КПД, ГДУ компрессора и ресурса лопатки. При уменьшении угла γк < 68,8° существенно ограничивается диапазон газодинамической устойчивости работы компрессора, падает КПД ступени и возрастает риск аварийно опасного срыва воздушного потока с выпуклой спинки 4 пера 2 лопатки с результирующей потерей ГДУ. С увеличением угла γк > 74,8° возрастает риск срыва воздушного потока с корыта 3 пера 2 лопатки и снижается КПД, а также неоправданно возрастают напряжения в лопатке на всех режимах работы КНД, что приводит к снижению ресурса, увеличению материалоемкости лопаток и, в конечном счете, к утяжелению компрессора и снижению эксплуатационной экономичности двигателя.

Аналогичные процессы имеют место с получением положительного результата при соблюдении и отрицательного при выходе за пределы найденных в изобретении границ диапазонов градиентов Gу.п = (207,3÷297,9) [град/м] по высоте Нср пера 2 лопатки. При выполнении трехмерного профиля пера лопатки со значениями градиента Gу.п < 207,3 [град/м] существенно ограничивается диапазон ГДУ работы КНД, падает КПД ступени и возрастает риск аварийно опасного срыва потока воздушного потока с выпуклой спинки 4 пера лопатки с результирующей потерей ГДУ. Увеличение отношения разности углов установки хорды 7 пера 2 по высоте лопатки до значений градиента Gу.п, превышающих верхний предел Gу.п > 297,9 [град/м], приводит к недопустимому уменьшению угла раскрытия периферийного участка 15 пера 2 лопатки, что в свою очередь приводит к снижению КПД, негативному уменьшению диапазона ГДУ компрессора и недопустимому рассогласованию работы второй ступени ротора с последующими ступенями КНД.

Градиент Gу.х увеличения хорды 7 пера 2 лопатки по средней высоте Нср пера 1 лопатки характеризует парусность пера, образованную в результате углового расхождения входной и выходной кромок 5 и 6 пера 2 от втулки до периферийного торца 11. Парусность пера по высоте лопатки спрофилирована по градиенту Gу.х углового расширения хорды 7 пера 2 с заявленным диапазоном Gу.х = (6,6÷9,5)·10-2 [м/м], что обеспечивает получение технического результата изобретения. Уменьшение отношения разности длин периферийной и корневой хорд пера 2 к средней высоте Нср пера (Gу.х < 6,6·10-2) приводит к образованию недостаточной густоты заполнения периферийного кольцевого участка площади поперечного сечения проточной части лопаточного венца периферийными участками 15 пера 2 лопаток в проекции на условную плоскость, нормальную к оси ротора. Как следствие, возникает недопустимое снижение запаса ГДУ, сужение диапазона газодинамической устойчивости работы компрессора приводит к существенному снижению КПД за счет возможного срыва воздушного потока со спинки 4 пера 2 лопатки. Увеличение (Gу.х > 9,5·10-2) приводит к неоправданному увеличению потерь от трения потока о профиль пера 2 лопатки и к снижению КПД компрессора.

Технический результат повышения ресурса лопатки в два раза достигается при соблюдении условия соотношения разности толщин к средней высоте пера 2 лопатки, принимаемого в пределах найденного в изобретении указанного диапазона значений градиента Gу.т = (1,5÷2,2)·10-2 [м/м] за счет обеспечения требуемой статической и динамической жесткости при оптимальной материалоемкости профиля пера 2 лопатки. При значениях градиента Gу.т < 1,5·10-2 [м/м] возникает излишнее повышение материалоемкости вследствие неоправданного реальными сочетаниями нагрузок увеличения толщины периферийной части пера лопатки, что приводит к завышению массы компрессора и снижению экономичности двигателя. При значениях градиента Gу.т > 2,2·10-2 [м/м] требуемое повышение ресурса лопатки не достигается из-за снижения динамической прочности в процессе эксплуатации компрессора вследствие неоправданного возрастания параметров изгибных колебаний профиля пера 2 при недопустимом уменьшении максимальной толщины профиля в наиболее нагруженной периферийной части длины пера лопатки.

Таким образом, за счет улучшения конструктивных и аэродинамических параметров лопатки рабочего колеса второй ступени достигают повышение КПД и расширение диапазона режимов газодинамической устойчивости КНД двигателя без увеличения материалоемкости лопатки.


ЛОПАТКА РАБОЧЕГО КОЛЕСА РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
ЛОПАТКА РАБОЧЕГО КОЛЕСА РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
ЛОПАТКА РАБОЧЕГО КОЛЕСА РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 271-279 of 279 items.
20.01.2018
№218.016.1642

Устройство для запуска газотурбинного двигателя

Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей. Устройство для запуска газотурбинного двигателя содержит ротор, образованный компрессором, турбиной и валом, соединяющим их, камеру сгорания, вспомогательную силовую...
Тип: Изобретение
Номер охранного документа: 0002635164
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1d99

Способ диагностики технического состояния двухконтурного газотурбинного двигателя при эксплуатации

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно к способам диагностики технического состояния двухконтурного газотурбинного двигателя по газодинамическим параметрам потока. Диагностику технического...
Тип: Изобретение
Номер охранного документа: 0002640972
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e3e

Маслосистема газотурбинного двигателя маневренного самолета

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002640900
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2a8e

Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя

Изобретение относится к области турбомашиностроения, в частности, может быть использовано в конструкции рабочих колес осевых компрессоров газотурбинных двигателей. Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя содержит диск с кольцевым пазом и лопатки. Между...
Тип: Изобретение
Номер охранного документа: 0002642976
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3176

Способ испытания авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую...
Тип: Изобретение
Номер охранного документа: 0002645066
Дата охранного документа: 15.02.2018
10.04.2019
№219.016.ff53

Способ исследования динамических свойств вращающегося ротора

Изобретение относится к области турбомашиностроения, а именно к способам снижения уровня вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами. Способ исследования динамических свойств вращающегося ротора осуществляют...
Тип: Изобретение
Номер охранного документа: 0002273836
Дата охранного документа: 10.04.2006
Showing 281-290 of 379 items.
09.06.2018
№218.016.5c96

Спрямляющий аппарат компрессора газотурбинного двигателя

Изобретение относится к области двигателестроения, в частности к спрямляющим аппаратам компрессора газотурбинного двигателя. В спрямляющем аппарате компрессора газотурбинного двигателя, содержащем наружное кольцо, выполненное разборным и зафиксированное в составном корпусе, внутреннее кольцо и...
Тип: Изобретение
Номер охранного документа: 0002656168
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d2e

Способ эксплуатации газотурбинного двигателя

Способ эксплуатации газотурбинного двигателя (ГТД) относится к области двигателестроения, а именно к испытаниям ГТД во время их длительной эксплуатации. Измеряют статическое давление на входе в двигатель на контролируемом режиме при приемо-сдаточных испытаниях и в процессе эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002656083
Дата охранного документа: 30.05.2018
05.07.2018
№218.016.6bb6

Способ испытаний газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей (ГТД). В способе испытаний ГТД предварительно проводят испытания репрезентативного количества двигателей от трех до пяти на выбранном режиме работы двигателя, измеряют...
Тип: Изобретение
Номер охранного документа: 0002659893
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6cc8

Способ испытаний газотурбинного двигателя

Изобретение относится к области турбомашиностроения, а именно к способам испытаний газотурбинных двигателей. Способ испытаний газотурбинного двигателя включает испытания при отказе системы управления при превышении максимально допустимой температуры газа перед турбиной. При осуществлении...
Тип: Изобретение
Номер охранного документа: 0002660214
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d09

Двухсекционный центробежно-шестеренный насос

Изобретение относится к авиадвигателестроению и касается устройства насоса, используемого в маслосистемах авиационных газотурбинных двигателей. Двухсекционный центробежно-шестеренный насос содержит корпус, выполненный в виде двух полуразъемов, образующих замкнутую полость. Внутри полости с...
Тип: Изобретение
Номер охранного документа: 0002660228
Дата охранного документа: 05.07.2018
26.07.2018
№218.016.759d

Способ испытания газотурбинного двигателя

Изобретение относится к области двигателестроения, а именно к способам испытания авиационных газотурбинных двигателей (ГТД). Предварительно для данного типа двигателей проводят испытания с измерением остаточного объема масла в опорах двигателя после останова при нескольких значениях времени...
Тип: Изобретение
Номер охранного документа: 0002662258
Дата охранного документа: 25.07.2018
09.08.2018
№218.016.7985

Контактное радиально-торцевое графитовое уплотнение ротора турбомашины

Изобретение относится к области машиностроения и может быть использовано в конструкциях турбомашин для уплотнения кольцевых щелей между статором и ротором. Контактное радиально-торцевое графитовое уплотнение ротора турбомашины содержит последовательно установленные в кольцевой полости набор...
Тип: Изобретение
Номер охранного документа: 0002663368
Дата охранного документа: 03.08.2018
03.10.2018
№218.016.8d45

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя (ТРД) относится к авиадвигателестроению. Предварительно расчетно-экспериментальным методом определяют коэффициент К, учитывающий изменение температуры газа перед турбиной при изменении частоты...
Тип: Изобретение
Номер охранного документа: 0002668310
Дата охранного документа: 28.09.2018
13.10.2018
№218.016.9130

Блок подпятников откачивающего насоса маслоагрегата газотурбинного двигателя (гтд) (варианты), подпятник ведущего колеса откачивающего насоса маслоагрегата, подпятник ведомого колеса откачивающего насоса маслоагрегата

Группа изобретений относится к области авиадвигателестроения. Первый блок подпятников откачивающего насоса маслоагрегата включает два фронтальных подпятника, которые установлены в нижнем корпусе маслоагрегата. Второй блок подпятников включает два тыльных подпятника, которые установлены в...
Тип: Изобретение
Номер охранного документа: 0002669453
Дата охранного документа: 11.10.2018
13.10.2018
№218.016.9192

Способ работы откачивающего насоса маслоагрегата газотурбинного двигателя (гтд) и откачивающий насос маслоагрегата гтд, работающий этим способом (варианты), ведущее колесо откачивающего насоса маслоагрегата гтд, ведомое колесо откачивающего насоса маслоагрегата гтд

Группа изобретений относится к области авиадвигателестроения. Смонтированный в корпусе маслоагрегата откачивающий насос устанавливают на крышке КДА в зоне стока отработанного масла. Откачивающий насос содержит шестеренный рабочий орган, который включает установленные на параллельных валах два...
Тип: Изобретение
Номер охранного документа: 0002669531
Дата охранного документа: 11.10.2018
+ добавить свой РИД