×
13.01.2017
217.015.6c61

Результат интеллектуальной деятельности: СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА

Вид РИД

Изобретение

№ охранного документа
0002592582
Дата охранного документа
27.07.2016
Аннотация: Изобретение относится к способам гидравлического разрыва пласта. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину колонны труб до интервала пласта и проведение гидравлического разрыва пласта - ГРП закачкой жидкости разрыва по колонне труб. При этом на устье скважины нижний конец колонны труб оснащают щелевым перфоратором с обратным клапаном снизу и спускают в скважину в интервал пласта. Производят обратную промывку в полуторократном объеме скважины. Затем посредством щелевого перфоратора с ориентировкой по азимуту максимального напряжения прорезают эксплуатационную колонну скважины и создают в интервале подошвы и кровли пласта по две оппозитные щели диаметром до 1,5 м и высотой щели 0,2-0,25 диаметра скважины. После чего в пласте между щелями через щелевой перфоратор закачкой жидкости разрыва по колонне труб выполняют ГРП с образованием трещин разрыва. После образования трещин разрыва производят крепление трещин сверхлегким проппантом плотностью 1200-1250 кг/м. При этом закачку жидкости разрыва по колонне труб через щелевой перфоратор продолжают и одновременно в заколонное пространство скважины производят закачку сверхлегкого проппанта под давлением, не превышающим допустимое на стенки скважины. По окончании крепления трещин колонну труб с щелевым перфоратором и обратным клапаном извлекают из скважины. Технический результат заключается в повышении качества вторичного вскрытия продуктивного пласта и расширении технологических возможностей реализации способа. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам гидравлического разрыва пласта, и способствует повышению продуктивности скважин.

Известен способ гидравлического разрыва пласта (ГРП) (Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений. Под ред. Ш.К. Гиматудинова. - М.: Недра, 1983. - С.333-343), заключающийся в первичном вскрытии пласта скважиной, вторичном вскрытии его перфорацией, нагнетании технологической жидкости при давлении, превышающем прочность пород призабойной зоны скважины, и образовании трещины, ее заполнении высокопроницаемым и механически прочным материалом-наполнителем, который уплотняется при снижении давления и сжатии трещины, при этом в скважине с глубиной выше 1500 м образуется вертикальная трещина, распространяющаяся в противоположных направлениях от ствола вглубь пласта и по вертикали, ее заполнение осуществляется текучей смесью технологической жидкости и наполнителя (песок, проппант). Давление начала разрыва пласта значительно превышает предельно допустимое давление в колонне скважины, поэтому продуктивный интервал изолируется пакером, разобщающим кольцевое пространство с низким давлением, сообщающиеся насосно-компрессорные трубы (НКТ) и забой с высоким давлением, поэтому создаваемая трещина проходит через продуктивный пласт и служит основным дренирующим пласт каналом.

Недостатками данного способа являются:

- во-первых, невозможность управления напряженным состоянием в прискважинной зоне, поскольку горные породы под действием сжимающих сил находятся в напряженном состоянии, вследствие чего поры в породе продуктивного пласта сжимаются и проницаемость продуктивного пласта снижается;

- во-вторых, невозможность создания более одной трещины;

- в-третьих, сложность достижения равномерного заполнения трещины, неизбежность ее сужения при снижении давления и сжатии.

Также известен способ гидравлического разрыва пласта (патент RU №2311528, МПК Е21В 43/26, опубл. 27.11.2007, бюл. №33), включающий вскрытие пласта вертикальной или наклонной скважиной, размещение в ней в заданном интервале пласта гидромониторного инструмента с серией струйных насадок, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи, при этом используют гидромониторный инструмент с серией струйных насадок, расположенных вдоль инструмента в две линии с фазировкой 180° и расстоянием между насадками в линии не более двух диаметров обсадной колонны, гидромониторный инструмент поворачивают на заданный угол для изменения направления развития каждой последующей трещины, при этом трещины образуются при давлении в обсадной колонне ниже бокового горного давления, а в качестве рабочей жидкости используют жидкость, родственную пластовой жидкости.

Недостатками способа являются:

- во-первых, невозможность управления напряженным состоянием в прискважинной зоне, поскольку горные породы под действием сжимающих сил находятся в напряженном состоянии, вследствие чего поры в породе продуктивного пласта сжимаются и проницаемость продуктивного пласта снижается;

- во-вторых, низкое качество вскрытия пласта вследствие его вторичной кольматации при образовании каверн в пласте струйными насадками гидромониторного инструмента без предварительной промывки скважины;

- в-третьих, низкая надежность ГРП, связанная с тем, что в процессе его проведения происходит неравномерное развитие двух трещин, что обусловлено наличием струйных насадок, расположенных вдоль инструмента в две линии с фазировкой 180°, это приводит к тому, что трещина преимущественно будет развиваться только в одном из направлений по пути наименьшего сопротивления, а также в процессе проведения ГРП в вертикальной скважине происходит растяжение колонны труб, обусловленное отсутствием пакера в скважине.

Наиболее близким по технической сущности и достигаемому результату является способ гидравлического разрыва пласта (патент RU №2538009, МПК Е21В 43/267, опубл. 10.01.2015 г., бюл. №1), включающий вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для прорезания эксплуатационной колонны в скважине и образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи, при этом используют гидромониторный инструмент с серией струйных насадок, расположенных вдоль инструмента с расстоянием между насадками в линии не более двух диаметров обсадной колонны, гидромониторный инструмент поворачивают на заданный угол для изменения направления развития каждой последующей трещины, при этом трещины образуют при давлении нагнетания рабочей жидкости в обсадной колонне ниже бокового горного давления, перед спуском колонны труб в скважину на нижний конец гидромониторного инструмента устанавливают поворотное устройство и механический пакер, спускают колонну труб в скважину до тех пор, пока гидромониторная насадка не разместится напротив заданного интервала пласта, подлежащего гидравлическому разрыву, производят посадку механического пакера, определяют объем рабочей жидкости для создания и развития трещин, производят закачку рабочей жидкости по колонне труб через струйные насадки гидромониторного инструмента для образования каверн в пласте, при этом с целью компенсации утечек и расклинивания трещин в пласте в процессе гидравлического разрыва пласта применяют кислоту в объеме, равном 20% от объема рабочей жидкости, производят закачку рабочей жидкости по колонне труб через гидромониторный инструмент в каверну до создания трещины разрыва, после чего в заколонное пространство скважины начинают закачивать кислоту с целью компенсации утечек и расклинивания трещины, при этом закачку жидкости по колонне труб продолжают, при этом давление закачки кислоты в заколонное пространство скважины составляет 85% от давления, создаваемого в колонне труб в процессе развития трещины, по окончании развития трещины и расклинивания трещины в одном направлении приподнимают колонну труб на 1 м, поворачивают колонну труб на угол, соответствующий направлению формирования следующей трещины, и опускают, затем повторяют технологические операции, начиная с закачки жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, количество поворотов колонны труб соответствует количеству направлений трещин, создаваемых в данном интервале пласта.

Недостатками данного способа являются:

- во-первых, невозможность управления напряженным состоянием в прискважинной зоне, поскольку горные породы под действием сжимающих сил находятся в напряженном состоянии, вследствие чего поры в породе продуктивного пласта сжимаются и проницаемость продуктивного пласта снижается;

- во-вторых, низкое качество вскрытия пласта вследствие его вторичной кольматации при образовании каверн в пласте струйными насадками гидромониторного инструмента без предварительной промывки скважины;

- в-третьих, ограниченные технологические возможности реализации способа (только в карбонатных коллекторах), поскольку невозможно закрепить образованные трещины проппантом.

Техническими задачами предложения являются создание условий контроля управления напряженным состоянием в прискважинной зоне, повышение качества вторичного вскрытия продуктивного пласта и расширение технологических возможностей реализации способа.

Поставленные задачи решаются способом гидравлического разрыва пласта - ГРП, включающим вскрытие пласта вертикальной скважиной, спуск в скважину колонны труб до интервала пласта, прорезание эксплуатационной колонны скважины и проведение гидравлического разрыва пласта закачкой жидкости разрыва по колонне труб.

Новым является то, что на устье скважины нижний конец колонны труб оснащают щелевым перфоратором с обратным клапаном снизу и спускают в скважину в интервал пласта, производят обратную промывку в полуторократном объеме скважины, затем посредством щелевого перфоратора с ориентировкой по азимуту максимального напряжения прорезают эксплуатационную колонну скважины и создают в интервале подошвы и кровли пласта по две оппозитные щели диаметром до 1,5 м и высотой щели 0,2-0,25 диаметра скважины, после чего в пласте между щелями через щелевой перфоратор закачкой жидкости разрыва по колонне труб выполняют ГРП с образованием трещин разрыва, после образования трещин разрыва производят крепление трещин сверхлегким проппантом плотностью 1200-1250 кг/м3, при этом закачку жидкости разрыва по колонне труб через щелевой перфоратор продолжают и одновременно в заколонное пространство скважины производят закачку сверхлегкого проппанта под давлением, не превышающим допустимое на стенки скважины, по окончании крепления трещин колонну труб с щелевым перфоратором и обратным клапаном извлекают из скважины.

На фиг. 1 схематично изображен предлагаемый способ в процессе выполнения оппозитных щелей с помощью щелевого перфоратора.

На фиг. 2 схематично изображен предлагаемый способ в процессе проведения ГРП посредством щелевого перфоратора.

На фиг. 3 схематично изображены оппозитные щели, выполненные в интервале подошвы и кровли пласта.

Предлагаемый способ реализуют следующим образом.

Вскрывают продуктивный пласт 1 вертикальной скважиной 2 (см. фиг. 1). На устье скважины 2 нижний конец колонны труб 3 оснащают щелевым перфоратором 4 с обратным клапаном 5 снизу и спускают в скважину 2 в интервал пласта 1.

Производят обратную промывку скважины в полуторократном объеме, например, 25 м3, при этом подачу промывочной жидкости производят с устья в заколонное пространство 6 скважины 2, а подъем промывочной жидкости через обратный клапан 5 и щелевой перфоратор 4 по колонне труб 3.

Обратная промывка скважины, проводимая непосредственно перед щелевой перфорацией, позволяет исключить вторичную кольматацию пласта в процессе щелевой перфорации, что исключает ухудшение коллекторских свойств пласта в призабойной зоне.

Посредством щелевого перфоратора 4 с ориентировкой по азимуту максимального напряжения - σмax прорезают эксплуатационную колонну скважины 2 и создают в интервале подошвы 7 и кровли 8 пласта 1 по две оппозитные (диаметрально противоположно расположенные) щели 9′ и 9′′, а также 10′ и 10′′ соответственно диаметром D до 1,5 м (см. фиг. 3) и высотой щели d2=(0,2-0,25)·d1, где d1 - диаметр скважины 2 (см. фиг. 1).

Оппозитные щели 9′, 9′′ и 10′, 10′′ создают путем одновременной подачи жидкости в колонну труб 3 и реверсивным угловым вращением с устья скважины 2 колонны труб 3 с щелевым перфоратором 4, оснащенным двумя диаметрально противоположно размещенными насадками (на фиг. 1 и 2 показано условно), на расчетный угол, например, 150° (см. фиг. 3) с угловой скоростью 5-10 об/мин.

В качестве щелевого перфоратора применяют любое известное устройство, обеспечивающее прорезание эксплуатационной колонны скважины 2 с последующим созданием щелей 9′ и 9′′, а также 10′ и 10′′ в породе пласта 1 под действием давления жидкости до диаметра D=1,5 м (см. фиг. 1 и 3) и высотой щели d2=(0,2-0,25)·d1.

Геометрия каждой щели определяется в зависимости от геологических условий и направления максимального напряжений - σмах до вскрытия пласта 1 опытным путем.

При одновременном формировании двух диаметрально расположенных щелей 9′, 9′′ и 10′, 10′′ снимаются кольцевые сжимающие напряжения металла эксплуатационной колонны скважины 2, что полностью исключает возможность смыкания сформированных щелей.

Создание параллельных по отношению друг к другу двух щелей 9′, 9′′ и 10′, 10′′ приводит к перераспределению напряжений, а именно к трансформации сжимающих сил в растягивающие, вследствие чего поры в породе продуктивного пласта в прискважинной зоне раскрываются и проницаемость продуктивного пласта увеличивается.

Проведение ГРП в пласте 1 между щелями 9′, 9′′ и 10′, 10′′ приводит как к увеличению производительности скважины, так и продолжительности эффекта повышения продуктивности скважины от щелевой разгрузки пласта, также увеличивается коэффициент проницаемости пласта за счет изменения величины и направления касательных напряжений в прискважинной зоне. Кроме того, за счет создания щелей в прискважинной зоне увеличивается коэффициент гидродинамического совершенства скважины.

Производят обратную промывку скважины от заколонного кольматанта, осевшего в скважине после создания щелей 9′, 9′′ и 10′, 10′′, например, в двукратном объеме, равном 33 м3, при этом подачу промывочной жидкости производят с устья в межколонное пространство 6 скважины 2, а подъем промывочной жидкости через обратный клапан 5 и щелевой перфоратор 4 по колонне труб 3.

Далее в пласте 1 между щелями 9′, 9′′ и 10′, 10′′ (см. фиг. 2) через щелевой перфоратор 4 закачкой жидкости разрыва по колонне труб 3 выполняют ГРП с образованием трещин разрыва 11. Подачей жидкости разрыва в колонну НКТ 3 через насадки щелевого перфоратора 4 прорезают эксплуатационную колонну и образуют трещины разрыва 11 в направлении максимального напряжения - σмах. После образования трещин разрыва 11 производят крепление трещин 11 проппантом 12. В качестве проппанта используют сверхлегкий проппант плотностью 1200-1250 кг/м3.

Как показали исследования, проводимость частичного монослоя сверхлегкого проппанта плотностью 1200-1250 кг/м3 превосходит проводимость пяти слоев кварцевого песка 20/40 меш (фракционный состав песка). Данный факт позволяет установить, что при закачке гораздо меньших объемов сверхлегких проппантов можно создать трещину с большей проводимостью, чем если бы в качестве проппанта использовался кварцевый песок. Меньшие объемы закачки сверхлегкого проппанта для образования в трещине структуры частичного монослоя позволяют сэкономить на реагентах, необходимых для проведения гидроразрыва, снизить скорость закачки, сократить продолжительность проведения работ.

Закачку жидкости разрыва по колонне труб 3 через щелевой перфоратор 4 продолжают и одновременно в заколонное пространство 6 скважины 2 производят закачку проппанта под давлением, не превышающим допустимое на стенки скважины, например, 9,0 МПа.

После проведения ГРП с образованием трещин разрыва 11 и заполнения их сверхлегким проппантом 12 между щелями 9′, 9′′ и 10′, 10′′ происходит увеличение производительности скважины и продолжительности эффекта от ГРП, что связано с щелевой разгрузкой пласта 1 в прискважинной зоне, а также увеличивается коэффициент проницаемости пласта 1 за счет изменения величины и направления касательных напряжений в прискважинной зоне.

Кроме того, за счет создания щелей 9′, 9′′ и 10′, 10′′ в прискважинной зоне увеличивается коэффициент гидродинамического совершенства скважины.

По окончании крепления трещин колонну труб 3 с щелевым перфоратором 4 и обратным клапаном 5 извлекают из скважины 2.

Предлагаемый способ ГРП позволяет:

- управлять напряженным состоянием в прискважинной зоне;

- повысить качество вторичного вскрытия продуктивного пласта;

- расширить технологические возможности реализации способа.

Способ гидравлического разрыва пласта, включающий вскрытие пласта вертикальной скважиной, спуск в скважину колонны труб до интервала пласта и проведение гидравлического разрыва пласта - ГРП закачкой жидкости разрыва по колонне труб, отличающийся тем, что на устье скважины нижний конец колонны труб оснащают щелевым перфоратором с обратным клапаном снизу и спускают в скважину в интервал пласта, производят обратную промывку в полуторократном объеме скважины, затем посредством щелевого перфоратора с ориентировкой по азимуту максимального напряжения прорезают эксплуатационную колонну скважины и создают в интервале подошвы и кровли пласта по две оппозитные щели диаметром до 1,5 м и высотой щели 0,2-0,25 диаметра скважины, после чего в пласте между щелями через щелевой перфоратор закачкой жидкости разрыва по колонне труб выполняют ГРП с образованием трещин разрыва, после образования трещин разрыва производят крепление трещин сверхлегким проппантом плотностью 1200-1250 кг/м, при этом закачку жидкости разрыва по колонне труб через щелевой перфоратор продолжают и одновременно в заколонное пространство скважины производят закачку сверхлегкого проппанта под давлением, не превышающим допустимое на стенки скважины, по окончании крепления трещин колонну труб с щелевым перфоратором и обратным клапаном извлекают из скважины.
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА
Источник поступления информации: Роспатент

Showing 241-241 of 241 items.
04.04.2018
№218.016.33b1

Способ гидравлического разрыва карбонатного пласта

Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта (ГРП). Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола...
Тип: Изобретение
Номер охранного документа: 0002645688
Дата охранного документа: 27.02.2018
Showing 311-320 of 366 items.
10.07.2019
№219.017.ac0c

Перфоратор для скважины

Изобретение относится к нефтедобывающей промышленности, в частности к строительству и ремонту скважин, и может быть использовано для создания перфорационных каналов в обсадной колонне труб. Технический результат - надежность за счет защиты от несанкционированного перехода в рабочее положение,...
Тип: Изобретение
Номер охранного документа: 0002348796
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ac2b

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности и предназначено для временного перекрытия ствола скважины. Пакер-пробка состоит из ствола с внутренней цилиндрической выборкой, с наружной стороны которого установлены уплотнительный элемент с упором. Выше последнего находится упорная...
Тип: Изобретение
Номер охранного документа: 0002346142
Дата охранного документа: 10.02.2009
10.07.2019
№219.017.ac5f

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности для временного перекрытия ствола скважины, обеспечивает простоту конструкции, гарантированное и безопасное извлечение пакера-пробки без заклинивания. Пакер-пробка включает ствол, уплотнительный элемент, фиксатор положения уплотнительного...
Тип: Изобретение
Номер охранного документа: 0002391488
Дата охранного документа: 10.06.2010
10.07.2019
№219.017.ad46

Способ эксплуатации двухустьевой скважины

Изобретение относится к области разработки месторождений углеводородов двухустьевыми горизонтальными скважинами и может быть использовано для добычи высоковязких нефтей и битума. Обеспечивает упрощение монтажа пакера в скважине, а также возможность с помощью пакера проведения изоляции...
Тип: Изобретение
Номер охранного документа: 0002351753
Дата охранного документа: 10.04.2009
10.07.2019
№219.017.ae9d

Способ добычи из подземной залежи тяжелых и высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Для получения углеводородов из таких залежей необходимо их нагревание. Обеспечивает упрощение способа, увеличение точности ориентации горизонтальных...
Тип: Изобретение
Номер охранного документа: 0002322574
Дата охранного документа: 20.04.2008
10.07.2019
№219.017.ae9e

Способ добычи из подземной залежи тяжелых и высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Обеспечивает упрощение способа и повышение его эффективности за счет увеличения площади охвата залежи горизонтальными участками. Сущность изобретения:...
Тип: Изобретение
Номер охранного документа: 0002322577
Дата охранного документа: 20.04.2008
10.07.2019
№219.017.aeb6

Способ добычи из подземной залежи тяжелых и/или высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Для получения углеводородов из таких залежей необходимо их нагревание. Обеспечивает упрощение технологического процесса и увеличение точности ориентации...
Тип: Изобретение
Номер охранного документа: 0002321735
Дата охранного документа: 10.04.2008
10.07.2019
№219.017.b02a

Способ разработки месторождения высоковязкой нефти

Изобретение относится к нефтяной промышленности, в частности к добыче высоковязкой тяжелой и битуминозной нефти. Обеспечивает повышение эффективности способа за счет возможности увеличения паровой камеры и регулирования температуры горения в этой камере. Сущность изобретения: способ включает...
Тип: Изобретение
Номер охранного документа: 0002403382
Дата охранного документа: 10.11.2010
10.07.2019
№219.017.b07b

Способ освоения пласта скважины свабированием и устройство для его осуществления

Изобретение относится к области нефтяной и нефтегазовой промышленности и может быть использовано при освоении скважин после бурения и в процессе эксплуатации. Обеспечивает упрощение способа и конструкции устройства, а также исключение попадания скважинной жидкости в освоенный пласт. Сущность...
Тип: Изобретение
Номер охранного документа: 0002436944
Дата охранного документа: 20.12.2011
10.07.2019
№219.017.b10a

Способ определения пластового давления в нагнетательных скважинах

Изобретение относится к области добычи нефти и может быть использовано для определения пластового давления в нагнетательных скважинах. Способ определения пластового давления включает закачку рабочего агента в пласт и измерение забойного давления. Зона вскрытия пласта в скважине сверху и снизу...
Тип: Изобретение
Номер охранного документа: 0002441152
Дата охранного документа: 27.01.2012
+ добавить свой РИД