×
13.01.2017
217.015.6929

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ И ВОССТАНОВЛЕНИЯ ПОЛОЖЕНИЯ ГОРИЗОНТАЛЬНОЙ ОСИ ЛИНЕЙНОГО ИНЖЕНЕРНОГО ОБЪЕКТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области геодезического контроля и может быть использовано для определения и восстановления положения горизонтальной оси любого сложного инженерного линейного объекта. В заявленном способе определения и восстановления положения горизонтальной оси линейного инженерного объекта по реперам планово-высотного обоснования производят геодезические измерения, в результате чего определяют вышеупомянутую горизонтальную ось и каждый раз, а после ее утраты, восстанавливают от этих же реперов. В данном способе на одном из реперов планово-высотного обоснования устанавливают наземный лазерный сканер (далее - НЛС), создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые элементы конструкций линейного инженерного объекта, выполняют сканирование всех конструкций линейного инженерного объекта при помощи НЛС с линейной дискретностью шага сканирования в пределах от 2 до 10 мм и средней квадратической погрешностью 2 мм, в результате чего определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта, передают результаты сканирования (скан) в ПЭВМ, с помощью компьютерной программы регистрируют в ней скан и получают цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта. Далее производят обработку данных результатов лазерного сканирования, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих измерению посторонних объектов, производят их фильтрацию, выполняют привязку скана к заданной системе координат. В этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту. Технический результат - повышение точности определения и восстановления положения горизонтальной оси линейного инженерного объекта с применением наземного лазерного сканера. 3 ил.

Данный способ относится к области геодезического контроля в строительной отрасли.

Известен способ определения координат горизонтальной оси линейного инженерного объекта с помощью геодезических приборов СНиП 3.01.03-84 «Геодезические работы в строительстве», утвержден постановлением Минстроя РФ от 5 августа 1996 г. №18-60], взятый в качестве прототипа.

Сущность данного способа состоит в том, что на контролируемом участке линейного инженерного объекта проводят геодезические измерения, последовательно вынося проектную ось в натуру от исходных реперов с применением геодезических средств измерений.

Недостатком этого способа является невозможность повторения измерений, так как точки измерений не закрепляются, поэтому невозможно точно произвести повторные геодезические измерения на контролируемом участке. Кроме того, данный способ предполагает наличие человеческого фактора в процессе производства работ, что ведет к увеличению трудозатрат и снижению достоверности, а значит - точности измерений.

Решаемая техническая задача заключается в повышении эффективности и достоверности работ за счет повышения точности определения и восстановления координат горизонтальной оси линейного инженерного объекта с применением наземного лазерного сканера.

Поставленная задача достигается тем, что в способе определения и восстановления положения горизонтальной оси линейного инженерного объекта, при котором по реперам планово-высотного обоснования производят геодезические измерения, в результате чего определяют вышеупомянутую горизонтальную ось и каждый раз, после ее утраты, восстанавливают от этих же реперов, согласно изобретению на одном из реперов планово-высотного обоснования устанавливают наземный лазерный сканер (НЛС), создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые (без изменения геометрической формы) элементы конструкций линейного инженерного объекта, выполняют сканирование всех конструкций линейного инженерного объекта при помощи наземного лазерного сканера (НЛС) с линейной дискретностью шага сканирования в пределах от 2 до 10 мм и средней квадратической погрешностью 2 мм, в результате чего определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта, передают результаты сканирования (скан) в ПЭВМ, с помощью компьютерной программы регистрируют в ней скан и получают цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта. Далее производят обработку данных результатов лазерного сканирования, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих измерению посторонних объектов, производят их фильтрацию в автоматическом режиме, выполняют привязку скана к заданной системе координат. В этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту. Каждый раз, в случае утраты горизонтальной оси, восстанавливают ее из предыдущей модели путем вторичного сканирования всех конструкций линейного инженерного объекта и наложения на предыдущую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, используя в качестве реперов те же твердые элементы конструкций линейного инженерного объекта.

Работа предлагаемого способа представлена на примере производства геодезических работ при возведении арочного Байтового моста через р. Обь (г. Новосибирск). Способ поясняется чертежами. На Фиг. 1 представлена схема контролируемого участка линейного инженерного объекта и закрепления в качестве реперов твердых (без изменения геометрической формы) элементов конструкций линейного инженерного объекта. На Фиг. 2 представлена общая схема создания фактической цифровой точечной метрической трехмерной (3D) модели контролируемого участка линейного инженерного объекта. На Фиг. 3 представлена схема определения и восстановления горизонтальной оси линейного инженерного объекта.

Предлагаемый способ осуществляется следующим образом. На контролируемом участке линейного инженерного объекта устанавливают наземный лазерный сканер (НЛС) на одном из реперов планово-высотного обоснования, создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые (без изменения геометрической формы) элементы конструкций линейного инженерного объекта (Фиг. 1), автоматически определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД). Выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования (расстояние между смежными точками) должен быть в пределах от 2 до 10 мм, средняя квадратическая погрешность должна составлять 2 мм. Результатом работ является «облако точек» лазерных отражений или сканы поверхности всех конструкций линейного инженерного объекта. Далее передают результаты сканирования (сканы) в ПЭВМ, с помощью компьютерной программы регистрируют в ней сканы и получают фактическую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта. Производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат. Проводят фильтрацию сканов для удаления измерений, полученных при отражении от посторонних объектов (Фиг. 2). В этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту. Каждый раз, в случае утраты горизонтальной оси, восстанавливают ее из предыдущей модели путем вторичного сканирования всех конструкций линейного инженерного объекта и наложения на предыдущую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, используя в качестве реперов те же твердые элементы конструкций линейного инженерного объекта (Фиг. 3).

Геодезические измерения, выполненные методом наземного лазерного сканирования, позволяют определять положение горизонтальной строительной оси любых сложных конструкций, используя в качестве реперов любые твердые элементы конструкций линейного инженерного объекта.

Технический результат - предлагаемый инновационный способ, основанный на бесконтактном методе наземного лазерного сканирования, позволяет повысить в целом эффективность геодезических работ за счет повышения точности определения и восстановления положения горизонтальной оси любой сложности линейного инженерного объекта, а также повысить безопасность проводимых дистанционным методом измерительных работ.

Способ определения и восстановления положения горизонтальной оси линейного инженерного объекта, при котором по реперам планово-высотного обоснования производят геодезические измерения, в результате чего определяют вышеупомянутую горизонтальную ось и каждый раз, после ее утраты, восстанавливают от этих же реперов, отличающийся тем, что на одном из реперов планово-высотного обоснования устанавливают наземный лазерный сканер (НЛС), создают дополнительную местную сеть планово-высотного обоснования, в которой в качестве реперов используют твердые (без изменения геометрической формы) элементы конструкций линейного инженерного объекта, выполняют сканирование всех конструкций линейного инженерного объекта при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 2 до 10 мм и средней квадратической погрешностью 2 мм, в результате чего определяют координаты X, Y, Z точек отражения лазерного луча от поверхности всех конструкций линейного инженерного объекта, передают результаты сканирования (сканы) в ПЭВМ, с помощью компьютерной программы регистрируют в ней сканы и получают цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, производят обработку данных результатов лазерного сканирования, определяют параметры фильтрации для удаления из облака точек лазерных отражений не подлежащих измерению посторонних объектов, производят их фильтрацию в автоматическом режиме, выполняют привязку скана к заданной системе координат, в этой же программе виртуально моделируют вышеупомянутую горизонтальную ось, автоматически аппроксимируя векторный объект «горизонтальная ось» в данные НЛС и находя точки его соприкосновения с полученными данными НЛС, определяют трехмерные координаты X, Y, Z полученной виртуальной горизонтальной оси, принадлежащей линейному инженерному объекту, и каждый раз при утрате восстанавливают ее из предыдущей модели путем вторичного сканирования всех конструкций линейного объекта и наложения на предыдущую цифровую точечную метрическую трехмерную (3D) модель поверхности всех конструкций линейного инженерного объекта, используя в качестве реперов те же твердые элементы конструкций линейного инженерного объекта.
СПОСОБ ОПРЕДЕЛЕНИЯ И ВОССТАНОВЛЕНИЯ ПОЛОЖЕНИЯ ГОРИЗОНТАЛЬНОЙ ОСИ ЛИНЕЙНОГО ИНЖЕНЕРНОГО ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ И ВОССТАНОВЛЕНИЯ ПОЛОЖЕНИЯ ГОРИЗОНТАЛЬНОЙ ОСИ ЛИНЕЙНОГО ИНЖЕНЕРНОГО ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ И ВОССТАНОВЛЕНИЯ ПОЛОЖЕНИЯ ГОРИЗОНТАЛЬНОЙ ОСИ ЛИНЕЙНОГО ИНЖЕНЕРНОГО ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ И ВОССТАНОВЛЕНИЯ ПОЛОЖЕНИЯ ГОРИЗОНТАЛЬНОЙ ОСИ ЛИНЕЙНОГО ИНЖЕНЕРНОГО ОБЪЕКТА
Источник поступления информации: Роспатент

Showing 41-46 of 46 items.
26.08.2017
№217.015.dfea

Способ определения поперечной ровности (колейности) поверхности дорожного полотна автомобильной дороги

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. При этом согласно изобретению планово-высотное обоснование (ПВО) на контролируемом участке автомобильной дороги создают методом мобильной сканерной съемки, где в качестве опорных пунктов ПВО служат базовые...
Тип: Изобретение
Номер охранного документа: 0002625091
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f16a

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к области получения изображений и касается способа формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн. Способ включает в себя облучение источником электромагнитного излучения...
Тип: Изобретение
Номер охранного документа: 0002631006
Дата охранного документа: 15.09.2017
29.12.2017
№217.015.f8bc

Защитный чехол ножной опоры экзоскелета

Изобретение относится к области медицинской техники и применяется совместно с моторизованным экзоскелетом, выполненным с возможностью крепления к ногам пользователя экзоскелета и предназначенным для оказания помощи при ходьбе людям с ограниченными двигательными возможностями, не имеющим...
Тип: Изобретение
Номер охранного документа: 0002639814
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0dcd

Кумулятивный заряд для формирования компактного элемента

Изобретение относится к конструкциям боевых частей боеприпасов с осесимметричными кумулятивными выемками. Кумулятивный заряд содержит профилированный корпус с размещенным в нем зарядом взрывчатого вещества с кумулятивной выемкой, металлическую облицовку кумулятивной выемки, инициирующее...
Тип: Изобретение
Номер охранного документа: 0002633021
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0ff9

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга оперативной обстановки паводковой ситуации с применением технологии дистанционного зондирования

Изобретение относится к способам геодезического мониторинга и может быть использовано для геодезического мониторинга паводковой ситуации. Сущность: на контролируемом участке создают планово-высотное обоснование (ПВО) по координатам X, Y, Z спутниковой привязки опознавательных знаков. Выполняют...
Тип: Изобретение
Номер охранного документа: 0002633642
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1725

Средство, обладающее противовирусной активностью в отношении вируса гриппа

Изобретение относится к химико-фармацевтической промышленности и представляет собой средство, обладающее противовирусной активностью в отношении вируса гриппа, представляющее собой бисульфитные производные окисленных линейных или циклических невосстанавливающих олигосахаридов, содержащих до 7...
Тип: Изобретение
Номер охранного документа: 0002635765
Дата охранного документа: 15.11.2017
Showing 41-50 of 65 items.
26.08.2017
№217.015.dfea

Способ определения поперечной ровности (колейности) поверхности дорожного полотна автомобильной дороги

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. При этом согласно изобретению планово-высотное обоснование (ПВО) на контролируемом участке автомобильной дороги создают методом мобильной сканерной съемки, где в качестве опорных пунктов ПВО служат базовые...
Тип: Изобретение
Номер охранного документа: 0002625091
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f16a

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к области получения изображений и касается способа формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн. Способ включает в себя облучение источником электромагнитного излучения...
Тип: Изобретение
Номер охранного документа: 0002631006
Дата охранного документа: 15.09.2017
29.12.2017
№217.015.f8bc

Защитный чехол ножной опоры экзоскелета

Изобретение относится к области медицинской техники и применяется совместно с моторизованным экзоскелетом, выполненным с возможностью крепления к ногам пользователя экзоскелета и предназначенным для оказания помощи при ходьбе людям с ограниченными двигательными возможностями, не имеющим...
Тип: Изобретение
Номер охранного документа: 0002639814
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0dcd

Кумулятивный заряд для формирования компактного элемента

Изобретение относится к конструкциям боевых частей боеприпасов с осесимметричными кумулятивными выемками. Кумулятивный заряд содержит профилированный корпус с размещенным в нем зарядом взрывчатого вещества с кумулятивной выемкой, металлическую облицовку кумулятивной выемки, инициирующее...
Тип: Изобретение
Номер охранного документа: 0002633021
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0ff9

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга оперативной обстановки паводковой ситуации с применением технологии дистанционного зондирования

Изобретение относится к способам геодезического мониторинга и может быть использовано для геодезического мониторинга паводковой ситуации. Сущность: на контролируемом участке создают планово-высотное обоснование (ПВО) по координатам X, Y, Z спутниковой привязки опознавательных знаков. Выполняют...
Тип: Изобретение
Номер охранного документа: 0002633642
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1725

Средство, обладающее противовирусной активностью в отношении вируса гриппа

Изобретение относится к химико-фармацевтической промышленности и представляет собой средство, обладающее противовирусной активностью в отношении вируса гриппа, представляющее собой бисульфитные производные окисленных линейных или циклических невосстанавливающих олигосахаридов, содержащих до 7...
Тип: Изобретение
Номер охранного документа: 0002635765
Дата охранного документа: 15.11.2017
18.05.2018
№218.016.5242

Волноводный выключатель

Изобретение относится к области радиотехники и может быть использовано в коммутаторах, фазовращателях, аттенюаторах и других управляющих устройствах СВЧ. Волноводный выключатель состоит из прямоугольного волновода, в поперечном сечении которого размещена диафрагма, выполненная на основе...
Тип: Изобретение
Номер охранного документа: 0002653088
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.524b

Фазовращатель

Использование: для создания фазовращателя. Сущность изобретения заключается в том, что фазовращатель содержит n щелевых мостов, соединенных последовательно, где n - число разрядов фазовращателя, 2n короткозамкнутых отрезков прямоугольных волноводов, вносимый фазовый сдвиг которых ϕ=180°/2, где...
Тип: Изобретение
Номер охранного документа: 0002653093
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.576e

Волноводный направленный ответвитель

Изобретение относится к области радиотехники и может быть использовано в волноводной, антенной и СВЧ измерительной технике. Волноводный направленный ответвитель содержит основной и дополнительный прямоугольные волноводы, имеющие общую стенку, в которой выполнены отверстия связи, реализованные в...
Тип: Изобретение
Номер охранного документа: 0002654989
Дата охранного документа: 23.05.2018
03.10.2018
№218.016.8d41

Двойной волноводный тройник

Изобретение относится к радиотехнике, в частности к двойным тройникам. Двойной волноводный тройник содержит прямоугольный волновод, образующий два боковых плеча, к широкой и узкой стенкам которого пристыкованы прямоугольные волноводы, образующие Е- и Н-плечи, продольные оси которых лежат в...
Тип: Изобретение
Номер охранного документа: 0002668340
Дата охранного документа: 28.09.2018
+ добавить свой РИД