×
13.01.2017
217.015.68ff

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к способам получения покрытий с использованием магнетронного распыления металлов, и может быть использовано для получения износостойких покрытий металлических деталей трения, в частности для компрессора газотурбинных двигателей и установок. Способ получения износостойкого покрытия на поверхности металлического изделия включает нанесение покрытия из сплава системы NiCrAlY с последующим нанесением на него керамического слоя магнетронным распылением мишени из сплава циркония, содержащего редкоземельные элементы, в среде аргона и кислорода. Осуществляют нанесение керамического слоя на основе стабилизированного оксида циркония со столбчатой структурой и открытыми порами, который насыщают дисульфидом молибдена или вольфрама в процессе катафореза. Нанесение керамического слоя магнетронным распылением мишени осуществляют из сплава циркония, содержащего, мас.%: иттрий 2-7,5, гадолиний 2-7,5, цирконий - остальное. Увеличивается износостойкость насыщенных сульфидами покрытий. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к металлургии, к способам получения покрытий с использованием магнетронного распыления металлов, и может быть использовано для получения износостойких покрытий металлических деталей трения, в частности, для компрессора газотурбинных двигателей и установок.

Оксидная керамика обладает низким коэффициентом теплопроводности и успешно используется в качестве теплозащитных покрытий. Покрытия на основе оксидной керамики, в том числе включающие стабилизированный оксид циркония, используют и в качестве износостойких покрытий, причем наноструктурная керамика обладает лучшими свойствами. Керамический слой наносят на подложку обычно методом газотермического напыления порошковых материалов или с использованием метода физического осаждения из паровой фазы, в том числе с магнетронным распылением металлических мишеней в кислородсодержащей среде. В последнем случае получают более однородное покрытие, что важно для некоторых изделий.

Способ нанесения керамического покрытия по патенту RU 2409701 с магнетронным распылением металлической мишени в среде аргона и кислорода является наиболее близким аналогом предлагаемого способа получения износостойких покрытий. Способ нанесения керамического покрытия на изделия из жаропрочных никелевых сплавов по патенту RU 2409701 включает обработку поверхности изделия, помещенного в вакуумированную и наполненную смесью аргона и кислорода камеру распыления, потоком ускоренных ионов инертного газа, совмещенную с нагревом изделия до температуры 500-1000°C, распыление мишени, например, из сплава Zr-(6-8%)Y, в среде аргона и кислорода с образованием оксидного керамического слоя и термообработку изделия. Перед формированием керамического покрытия на поверхность изделия предпочтительно наносят слой жаростойкого никелевого сплава, содержащего алюминий, хром и редкоземельный металл. Полученное таким способом покрытие, например, из стабилизированного иттрием оксида циркония, характеризуется высокой стойкостью к термоциклированию и не предназначено для применения на трущихся поверхностях.

Для улучшения износостойкости покрытия его уплотняют различными способами, в том числе с использованием методов пропитки и электроосаждения.

Для защиты металла и керамического покрытия от воздействий внешней среды также уплотняют поверхность покрытия, снижают его пористость. Уплотнение поверхности покрытия может быть достигнуто при пропитке покрытия, полученного методом термического напыления, различными соединениями. Так, агентом для пропитки покрытия из оксида циркония или оксида алюминия, нанесенного на металл с соединительным слоем Ni-Cr, является алкоксид или ацетонат, например тетраметилсиликат или ацетилацетонат титана (JPS 63293153). Алкоксиды металлов (Ti, Si, Zr, Al и др.) также используют для уплотнения поверхности полученных методом термического напыления керамических покрытий по патенту JP 2574987, но в процессе электрофореза, подавая на изделие с покрытием положительный потенциал. Алкоксид при сушке полимеризуется с образованием плотного слоя на поверхности покрытия.

Для улучшения трибологических характеристик износостойких покрытий в их состав вводят компоненты, обеспечивающие твердую смазку - графит, дисульфиды молибдена и вольфрама. Так, адаптивные нанокомпозитные покрытия на основе стабилизированного иттрием оксида циркония включают в качестве компонентов, обеспечивающих смазку и снижение коэффициента трения при температурах до 700°C, серебро и дисульфид молибдена (С. Muratore, A.A. Voevodin. Surfaceand Coating Technology, 2006, v. 201, issue 7, p. 4125-4130). Покрытие наносят с использованием лазерной и магнетронной техники.

Техническая задача, на решение которой направлено изобретение - получение износостойкого покрытия для металлических изделий, работающих в условиях контактного трения вследствие вибраций на высоких скоростях вращения при температурах до 600°C.

Установлено, что при получении керамического покрытия магнетронным распылением мишеней из сплава на основе циркония и редкоземельных элементов (иттрий, гадолиний и др.), оксиды которых стабилизируют оксид циркония, формируется керамическое покрытие на основе стабилизированного оксида циркония со столбчатой структурой, насыщение которого сульфидом молибдена или вольфрама позволяет получить износостойкую структуру, содержащую твердую смазку. Это позволяет повысить износостойкость металлических изделий при температурах до 600°C в условиях контактного трения.

Предлагаемый способ получения износостойкого покрытия на металлической поверхности с покрытием из сплава системы NiCrAlY включает нанесение керамического слоя магнетронным распылением мишени из сплава циркония, содержащего редкоземельные элементы, в среде аргона и кислорода и отличается тем, что полученный керамический слой насыщают сульфидом молибдена или вольфрама в процессе катафореза.

Применение магнетронного распыления мишени из циркониевого сплава указанного состава позволяет получить равномерное и достаточно однородное пористое керамическое покрытие, а обработка поверхности полученного керамического покрытия сульфидом молибдена или вольфрама в процессе катафореза позволяет контролировать заполнение пор компонентами, осуществляющими твердую смазку поверхности при трении.

Способ нанесения покрытия на поверхность металлического изделия путем распыления металлической мишени ионами газа с образованием металлической плазмы известен и широко применяется («Магнетронные распылительные системы». Данилин Б.С., Сарчин В.К. 1982 г., стр. 73). Оксидные покрытия получают при магнетронном распылении мишени из циркониевого сплава в среде кислорода и аргона, например, по патенту RU 2409701. Могут быть использованы другие варианты способа получения керамического покрытия с магнетронным распылением мишеней из циркониевого сплава, если получаемый керамический слой имеет столбчатую структуру с открытыми порами. В качестве мишеней для получения керамического слоя используют сплавы циркония, включающие редкоземельные элементы, оксиды которых стабилизируют структуру оксида циркония, в том числе комбинации иттрия, гадолиния, неодима, иттербия и др. Стабилизация оксида циркония, как известно, затрудняет фазовую трансформацию в процессе трения, приводящую к растрескиванию керамического слоя. Циркониевый сплав может включать также гафний, алюминий, а также неизбежные примеси.

Для обеспечения высокой адгезии керамического слоя к металлической поверхности изделия и для ее защиты от коррозии в условиях высоких температур за счет образования оксидной пленки на металлическую поверхность изделия предварительно наносят покрытие из сплава системы NiCrAlY. Покрытие получают предпочтительно ионно-плазменным методом, с использованием сплава на основе никеля, включающего алюминий, хром, иттрий, например сплава СДП-2.

После нанесения на металлическую поверхность с покрытием из сплава системы NiCrAlY керамического слоя требуемой толщины, обычно в пределах 10-15 мкм, его насыщают дисульфидом молибдена или вольфрама в процессе катафореза суспензии частиц дисульфида молибдена или сульфида вольфрама, предпочтительно нанокристаллических, в органическом растворе. Процесс осуществляют следующим образом. На металлическое изделие с керамическим слоем, помещенное в ванну с суспензией для электрофореза, подают отрицательный заряд, и частицы соли осаждаются на катоде, заполняя его поры. О насыщении керамического слоя сульфидами свидетельствует снижение электрического тока до практически полного прекращения процесса. После просушки изделие с износостойким покрытием шлифуют. Финишная обработка поверхности полученного керамического покрытия позволяет снизить коэффициент трения и повысить износостойкость за счет уменьшения количества дефектов.

Новый способ позволяет получить покрытия для металлических изделий на основе оксида циркония с уплотнением дисульфидом молибдена или вольфрама, обеспечивающие твердую смазку при контактном трении и снижение коэффициента трения и износа керамического покрытия при температурах до 600°C.

Ниже приведены примеры получения покрытий предлагаемым способом и их свойства.

Пример 1. Получение керамического покрытия на металлических образцах.

Для получения керамических покрытий были использованы модельные образцы деталей трения из стали ЭП517Ш и П678Ш. После предварительной подготовки поверхности изделий (удаление загрязнений и обезжиривание) на образцы наносят покрытие из сплава СДП-2 системы NiCrAlY толщиной от 3 до 10 мкм на ионно-плазменной установке МАП-2 по технологии ФГУП «ВИАМ».

На металлическую поверхность с покрытием из сплава системы NiCrAlY наносят керамическое покрытие на установке осаждения керамических слоев УОКС-2 с автоматической системой управления технологическим процессом, имеющей генератор магнетронного разряда, систему для подачи в вакуумный объем газов через ионный источник и регулирования их давления. Образцы размещают в камере распыления установки с двумя мишенями из циркониевого сплава. Используют мишени из следующих циркониевых сплавов: Zr-7,5Y-7,5Gd, Zr-5Y-5Gd, Zr-2,0Y-2,0Gd, Zr-5Y-2Yb и Zr-8,0Y. В камере распыления создают вакуум около 0,05 Па и проводят ионную очистку детали в течение 3 минут, затем в рабочий объем подают смесь кислорода с аргоном (кислород/аргон = 1 моль/моль) и осуществляют магнетронное распыление мишеней при воздействии на них потока ионов кислорода и аргона генерируемой при магнетронном разряде плазмы. Питание магнетронных испарителей осуществляют от инверторного источника тока с рабочим напряжением до 600 В, током до 30 А с использованием дуального электрического ключа, переключающего полярность питающего напряжения на распыляемых мишенях с частотой 40-50 кГц. Получают керамический слой толщиной до 15 мкм.

Пример 2. Насыщение поверхности керамического покрытия сульфидом молибдена или вольфрама методом катафореза.

Для катафореза готовят суспензию порошка сульфида молибдена (ДМИ-7) или сульфида вольфрама (ТУ 6-09-3372-67) в органическом растворе следующего состава: вода - 70% масс., глицерин - 29% масс., LaNO3 - 0,15-0,3% масс., NH4F - 0,03-0,05% масс., ПАВ - 0,0005% масс. Концентрация сульфида в суспензиях для катафореза 0,0047 г/мл и 0,0094 г/мл.

В электролитическую ванну с раствором для катафореза погружают образцы с керамическим покрытием. От инверторного источника тока подают напряжение на образец 8-10 В при токе 0,5 А. Процесс катафореза продолжается в течение 2-3 часов до насыщения поверхности сульфидом молибдена или вольфрама. Образцы для сравнения (по прототипу), приготовленные при распылении сплавов Zr-5Y-5Gd и Zr-8,0Y, не насыщали сульфидом.

Полученные образцы с покрытием испытывают на износостойкость согласно стандарту ASTM G99-05-2005 при температуре 600°C для основы ЭП517Ш и 400°C для основы ЭП678Ш, используя в качестве контртела шарик из карбида вольфрама, в следующих условиях: уровень нагрузки 0,76 Н, скорость вращения диска в контакте с шариком около 1 м/с, путь износа 500 м. Линейный износ определяют по профилограммам образцов с усреднением полученных результатов. Характеристики образцов покрытий и их свойства приведены в таблице.

Характеристики образцов покрытий и их свойства

По данным, приведенным в таблице, можно сделать вывод, что покрытия, полученные на металлических образцах по предложенному способу, обладают высокой износостойкостью, в 2 раза выше, чем покрытия по прототипу, причем эффект связан в основном с насыщением пор керамического слоя сульфидом молибдена или сульфидом вольфрама.

Источник поступления информации: Роспатент

Showing 341-350 of 367 items.
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ade

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов Может использоваться для деталей и узлов авиакосмической и ракетной техники, изготовление которых требует высокой технологической пластичности сплава. Сплав на основе титана содержит, мас.%: алюминий 2,0-6,5;...
Тип: Изобретение
Номер охранного документа: 0002356976
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7b23

Присадочный материал на основе никеля

Изобретение относится к сплавам на основе никеля, предназначенным для применения в авиационной, энергетической отраслях промышленности в качестве присадочного материала в сварных конструкциях в виде «лапши» или в виде сварочной проволоки. Для обеспечения повышенной кратковременной прочности...
Тип: Изобретение
Номер охранного документа: 0002373038
Дата охранного документа: 20.11.2009
09.06.2019
№219.017.7cba

Радиопоглощающий материал

Изобретение относится к области получения радиопоглощающих материалов (РПМ), обеспечивающих снижение уровня вторичного излучения, электромагнитную совместимость бортовой аппаратуры, коррекцию диаграмм направленности бортовых антенных систем при длительной эксплуатации и воздействии агрессивных...
Тип: Изобретение
Номер охранного документа: 0002410777
Дата охранного документа: 27.01.2011
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
Showing 331-335 of 335 items.
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД