×
13.01.2017
217.015.680e

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ МИКРОКОНЦЕНТРАЦИЙ УРАНА ИЗ ВОДНЫХ РАСТВОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сорбционной технологии извлечения радионуклидов, а именно к способу извлечения микроконцентраций урана из водных растворов. Способ проводят путем сорбции с использованием тонкослойного неорганического сорбента на основе гидроксида металла, осажденного на природное органическое вещество. При этом предварительно в очищаемый раствор вводят комплексон до достижения в воде его концентрации 0,15·10 - 0,3·10 моль/л при значениях рН от 6 до 8. Изобретение позволяет повысить динамическую обменную емкость (ДОЕ) сорбента по отношению к извлекаемому радионуклиду и увеличить скорость процесса сорбции. 3 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области сорбционной технологии извлечения радионуклидов из водных сред и может быть использовано в технологических и аналитических целях, а также в процессах очистки радиоактивно загрязненных сточных вод с низким уровнем активности, водоподготовки и водоочистки питьевой воды.

Известен способ дезактивации радиоактивных сред, включающий извлечение ионов металлов из растворов путем сорбции с использованием в качестве сорбента дешевого неорганического углеродсодержащего силиката состава C·SiO2, который является отходом нефтяной промышленности, описанный в патенте Российской Федерации №2389094, G21F 9/12, опубликованный 10.05.2010.

Недостатком данного способа является то, что сорбент обладает недостаточно высокой сорбционной активностью.

Известен способ очистки жидких радиоактивных отходов путем их контактирования с природной глиной при температуре не ниже 180°С с продолжительностью проведения процесса не менее 6 часов, описанный в патенте Российской Федерации №2120144, G21F 9/16, опубликованный 10.10.1998.

Недостатком этого способа являются высокие энергозатраты, а также низкая скорость сорбции.

Ближайшим техническим решением, выбранным в качестве прототипа, является способ извлечения микроконцентраций урана из водных растворов путем сорбции с использованием тонкослойного неорганического сорбента на основе гидроксида металла, осажденного на природное органическое вещество (Бетенеков Н.Д., Файзрахманов Ф.Ф. Радиохимическое исследование гидроксидных пленок. Исследование сорбции урана из пресных вод тонкослойным гидроксидом титана. - «Радиохимия», 1986, №4, с. 483-486).

Недостатками данного способа являются низкая скорость извлечения урана из раствора и невысокая обменная емкость его при сорбции из-за неполного использования ионообменных центров сорбента по отношению к извлекаемому радионуклиду.

Задача, решаемая предлагаемым изобретением, заключается в создании способа извлечения микроконцентраций урана из водных растворов с использованием в качестве сорбента недорогого доступного неорганического материала, обладающего высокими значениями коэффициента распределения, степени сорбции, коэффициента очистки по отношению к урану.

Технический результат заключается в повышении динамической обменной емкости (ДОЕ) сорбента по отношению к извлекаемому радионуклиду, а также в увеличении скорости процесса сорбции за счет присутствия в растворе комплексона, образующего с ураном и с другими катионами в водном растворе комплексные соединения.

Для достижения указанного технического результата в предлагаемом способе извлечения микроконцентраций урана из водных растворов путем сорбции с использованием тонкослойного неорганического сорбента на основе гидроксида металла, осажденного на природное органическое вещество, согласно заявляемому изобретению предварительно в очищаемый раствор вводят комплексон до достижения в воде его концентрации 0,15·10-3 - 0,3·10-3 моль/л при значениях рН от 6 до 8.

Причем в качестве тонкослойного неорганического сорбента используют гидроксид титана.

Причем в качестве комплексона используют Комплексон III.

Причем в качестве природного органического вещества используют гранулированную целлюлозу.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

В процессе поиска не выявлено технических решений, содержащих признаки, сходные с отличительными признаками заявляемого способа, что позволяет сделать вывод о соответствии его условию «изобретательский уровень».

На фиг. 1 приведена зависимость коэффициента распределения урана между раствором и гидроксидом титана от кислотности раствора.

На фиг. 2 приведена зависимость коэффициента распределения урана между раствором и гидроксидом титана от концентрации Комплексона III.

Предлагаемый способ осуществляется следующим образом.

Сорбцию проводят в динамическом режиме. В очищаемый раствор, содержащий уран, добавляют комплексон, например Комплексон III (двунатриевая соль этилендиаминтетрауксусной кислоты), до достижения в воде концентрации 0,15·10-3 - 0,3·10-3 моль/л, рН раствора путем добавления кислоты или щелочи доводят до значения 6-8, раствор перемешивают, пропускают через стеклянную хроматографическую колонку, содержащую сорбент на основе гидроксида металла, например титана. Колонки с сорбентом готовят следующим образом: колонки заполняют предварительно выдержанным в дистиллированной воде сорбентом, соотношение высоты загрузки колонки и ее диаметра 6:1. Исходная концентрация урана в растворе составляет 0,2 мг/л, масса сорбента 2 грамма. Сорбат собирают в пластиковые стаканы. Затем из сорбата отбирают две одинаковые пробы объемом 50 мл для измерений. Для измерения активности исходного и конечного раствора используют радиометр LB-770 фирмы Berthold. Для измерения концентрации исходного раствора используют спектрофотометр DR-2800.

Пробы для проведения измерений готовят следующим образом. Чистые сухие металлические подложки протирают этиловым спиртом и маркируют в соответствии с нумерацией проб. Пробы объемом 50 мл переносят на подложки, выпаривают досуха и прокаливают на электрической плитке. Затем проводят измерение активности проб на радиометре LB-770. После измерения активности проб рассчитывают основные показатели сорбции.

Из графика, представленного на фиг. 1, видно, что наиболее высокие значения коэффициента распределения достигаются при рН очищаемого раствора 6-8. Из графика, представленного на фиг. 2, видно, что наиболее высокие значения коэффициента распределения достигаются при концентрации Комплексона III от 0,15·10-3 до 0,3·10-3 моль/л.

Пример 1

Процесс сорбции проводят со скоростью 10 мл/(мин·см2). Комплексон III добавляют в очищаемый раствор до достижения в воде концентрации 0,25·10-3 моль/л. Объем пропущенного через сорбент раствора равен 10 литрам. Коэффициент распределения в данных условиях проведения сорбции составляет Kd = 158000 мл/г; степень сорбции урана S = 94%; коэффициент очистки Коч = 16,8; динамическая обменная емкость (ДОЕ) = 1,64 мг/г сорбента.

Пример 2

Процесс сорбции проводят со скоростью 5 мл/(мин·см2). Комплексон III добавляют в очищаемый раствор до достижения в воде концентрации 0,25·10-3 моль/л. Объем пропущенного через сорбент раствора равен 10 литрам. Коэффициент распределения в данных условиях проведения сорбции составляет Kd = 294700 мл/г; степень сорбции урана S = 98%; коэффициент очистки Коч = 125.

Предлагаемый способ извлечения микроконцентраций урана из водных растворов имеет ряд преимуществ перед прототипом. Во-первых, положительным эффектом предлагаемого технического решения является улучшение основных сорбционных характеристик: увеличение коэффициента распределения, степени сорбции, коэффициента очистки и динамической обменной емкости. Во-вторых, добавление Комплексона III в очищаемый раствор позволяет увеличить скорость пропускания раствора через сорбент до 10 мл/(мин·см2).

Таким образом, изложенные сведения свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- способ, воплощенный в заявляемом изобретении при его осуществлении, предназначен для извлечения микроконцентраций урана из водных растворов, а также в процессах очистки радиоактивно загрязненных сточных вод с низким уровнем активности, водоподготовки и водоочистки питьевой воды;

- для заявленного изобретения в том виде, как оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления и достижения усматриваемого заявителем технического результата.

Следовательно, заявляемое техническое решение соответствует условию «промышленная применимость».


СПОСОБ ИЗВЛЕЧЕНИЯ МИКРОКОНЦЕНТРАЦИЙ УРАНА ИЗ ВОДНЫХ РАСТВОРОВ
Источник поступления информации: Роспатент

Showing 341-350 of 706 items.
25.08.2018
№218.016.7f00

Способ стабилизации длины волны узкополосного волоконного лазера и устройство для его осуществления

Изобретение относится к лазерной технике. Способ стабилизации длины волны узкополосного волоконного лазера заключается в том, что подавляют возникающий модовый перескок, выравнивая скорости изменения собственной частоты кольцевого резонатора узкополосного волоконного лазера и центральной...
Тип: Изобретение
Номер охранного документа: 0002664758
Дата охранного документа: 22.08.2018
25.08.2018
№218.016.7f17

Способ гидролокации в мелководных областях с оперативным контролем изменчивости условий обнаружения подводной цели

Изобретение относится к области гидролокации, может быть использовано при проведении подводных работ, контроле подводной обстановки, при охране различных объектов со стороны водной среды и обеспечивает достижение постоянной максимально возможной дальности обнаружения подводных целей, а также...
Тип: Изобретение
Номер охранного документа: 0002664869
Дата охранного документа: 23.08.2018
25.08.2018
№218.016.7f71

Стенд для исследования параметров взаимодействия лазерного излучения с конструкционными материалами

Изобретение относится к области измерительной техники и касается стенда для исследования параметров взаимодействия лазерного излучения (ЛИ) с конструкционными материалами (КМ). Стенд включает в себя лазер, оптическую систему, светоделительный элемент, систему контроля параметров ЛИ, систему...
Тип: Изобретение
Номер охранного документа: 0002664969
Дата охранного документа: 24.08.2018
28.08.2018
№218.016.7fb2

Стеклокерамический композиционный электроизоляционный материал и способ его изготовления

Изобретение относится к стеклокерамическому композиционному электроизоляционному материалу. Шихта содержит следующие совместно измельченные и механоактивированные компоненты, мас.%: стекло СЛ2-1 50-70; фторфлогопит – остальное. Перемешивание компонентов проводят за два интервала не менее чем...
Тип: Изобретение
Номер охранного документа: 0002664993
Дата охранного документа: 24.08.2018
28.08.2018
№218.016.7fe3

Способ изготовления полых микросфер из вспучивающегося порошкового материала

Изобретение относится к области производства неорганических высокодисперсных наполнителей, а именно полых микросфер, используемых в производстве композиционных материалов различного назначения. В способе изготовления полых микросфер из вспучивающегося порошкового материала, включающем...
Тип: Изобретение
Номер охранного документа: 0002664990
Дата охранного документа: 24.08.2018
29.08.2018
№218.016.80f5

Генератор высоковольтных импульсов с оптическим управлением

Изобретение относится к импульсной высоковольтной технике. Технический результат заключается в повышении стабильности работы генератора высоковольтных импульсов с оптическим управлением. Это достигается за счет генератора высоковольтных импульсов с оптическим управлением, относится к импульсной...
Тип: Изобретение
Номер охранного документа: 0002665277
Дата охранного документа: 28.08.2018
09.09.2018
№218.016.853e

Субнаносекундный ускоритель электронов

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности. Формирователь содержит формирующую и передающею коаксиальные линии, обостряющий и срезающий разрядные зазоры, формирующая линия подключена к источнику наносекундных высоковольтных импульсов, при этом...
Тип: Изобретение
Номер охранного документа: 0002666353
Дата охранного документа: 07.09.2018
12.09.2018
№218.016.8697

Унифицированный радиационно-стойкий модуль коммутатора нагрузок исполнительных каскадов приборов автоматики

Изобретение относится к области электронной техники и может быть использовано в коммутационных устройствах, обеспечивающих подключение различных типов нагрузок, а также пиротехнических устройств. Технический результат заключается в повышении надежности исполнительных каскадов приборов...
Тип: Изобретение
Номер охранного документа: 0002666643
Дата охранного документа: 11.09.2018
03.10.2018
№218.016.8cf5

Устройство генерации импульсов широкополосного электромагнитного излучения свч- диапазона

Изобретение относится к технике СВЧ и может быть использовано при разработке генераторов широкополосного электромагнитного излучения (ЭМИ) в сантиметровом диапазоне длин волн. Устройство генерации импульсов широкополосного электромагнитного излучения СВЧ-диапазона представляет собой плоский...
Тип: Изобретение
Номер охранного документа: 0002668271
Дата охранного документа: 28.09.2018
04.10.2018
№218.016.8e67

Способ изготовления керамических поглотителей энергии

Изобретение относится к технологии изготовления керамических изделий для электронной и радиотехнической промышленности и может быть использовано при производстве поглотителей электромагнитного излучения, например в мощных генераторах, усилителях, лампах бегущей волны, клистронах и...
Тип: Изобретение
Номер охранного документа: 0002668643
Дата охранного документа: 02.10.2018
Showing 261-261 of 261 items.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
+ добавить свой РИД