×
13.01.2017
217.015.678a

Результат интеллектуальной деятельности: СПЛАВ С ВЫСОКОТЕМПЕРАТУРНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к сплавам на основе железа, обладающим высокотемпературным эффектом памяти формы, и может быть использовано для изготовления высокотемпературных термочувствительных элементов изделий, применяемых в авиационной и атомной промышленности. Сплав содержит 8-13 мас.% никеля, 0,0005-0,0200 мас.% диспрозия, не более 0,007 мас.% кислорода, остальное - железо. Сплав обладает высокой пластичностью, проявляет эффект памяти формы в области температур 658-740°С, степень восстановления формы 62-71%. 3 табл., 3 пр.

Изобретение относится к области металлургии, а именно к сплавам на основе железа, обладающим высокотемпературным эффектом памяти формы, которые могут быть использованы для изготовления изделий для авиационной и атомной промышленности.

Эффект памяти формы (ЭПФ) связан с обратимым температурозависимым мартенситным превращением сплавов: изменение формы при образовании мартенсита в процессе охлаждения или охлаждения и нагружения образца сплава (прямое мартенситное превращение) восстанавливается при нагревании и образовании аустенитной формы сплава (обратное мартенситное превращение). Температура прямого и обратного мартенситного превращения зависит от состава сплава и его термомеханической обработки. Температурный интервал между началом (As) и концом (Af) обратного мартенситного превращения соответствует температурному интервалу восстановления формы сплава, деформированного в мартенситном состоянии, то есть температурному интервалу проявления эффекта памяти формы.

В сплавах с ЭПФ тепловая энергия непосредственно преобразуется в механическую, что позволяет создать простые и надежные устройства. Так, сплавы с ЭПФ применяют в качестве термочувствительных элементов датчиков температуры и различных исполнительных механизмов. Специфическое применение сплавов с ЭПФ определяется величиной эффекта памяти формы и температурным интервалом его проявления.

Среди известных сплавов с памятью формы довольно мало сплавов с началом обратного мартенситного превращения выше 200°С, тем более - выше 600°С, но потребность в сплавах с высокотемпературным эффектом памяти формы существует.

Среди наиболее широко применяемых сплавов с ЭПФ - титано-никелевых - известны сплавы с высокотемпературным ЭПФ: сплавы с палладием, проявляющие ЭПФ при температурах до 336°С (US 4865663), с платиной, проявляющие ЭПФ в температурном интервале фазового перехода 100-400°С (US 7501032).

Среди сплавов с наиболее высокотемпературным ЭПФ следует указать циркониевые сплавы ZrRh (Ms=480°С, Mf=350°С, As=570°С, Af=680°С, степень восстановления формы 100%) и ZrIr (Ms=740°С, Mf=710°С, As=880°С, Af=940°С, степень восстановления 70-75% при скорости нагрева около 100°С/сек), указанные в публикации Ю.Н. Коваля «Особенности релаксационных процессов при мартенситном превращении» (Успехи физики металлов, 2006, т. 6, с. 169-196), сплав Zr19,98Ni30,18Co с температурами обратного мартенситного перехода As=490°С и Af=570°С (Phase transformations and shape memory effects in alloy of Zr-Ni-Co system. T. Kosorukova, G. Firstov, TY. Koval et al. Materials Science Forum, 2013, v. 738-739, p. 123-127). Исследование циркониевых сплавов показало их высокую хрупкость, что осложняет их обработку.

Наиболее перспективны обладающие ЭПФ сплавы на основе железа как доступные и эффективные. Обычные стали обладают высокой стойкостью к коррозии, достаточно легко обрабатываются, но, как отмечают многие исследователи, обладают недостаточно выраженным ЭПФ: степень восстановления формы недостаточно высока и величина обратимой деформации (0,5-1,5%) часто недостаточна для практического применения.

Известен ряд сплавов систем Fe-Ni и Fe-Mn с улучшенными характеристиками ЭПФ, например Fe(15-40)Ni(1,5-10)Al (JP 3907177), Fe(15-35)Ni(1,5-10)Si (JP 2000017395), Fe(25-35)Ni(13-25)Co(2-8)Al(1-20)X (US 8083990), Fe-Mn-Si (JP H09176729), но температурная область проявления ЭПФ у этих сплавов ниже 200°С или не указана.

Высокотемпературный ЭПФ возможен у железо-марганцевых сплавов: степень восстановления формы составляла более 70%. при нагревании до 500°С образца железо-марганцевой стали, содержащего (мас.%) 4,68Si, 13,10Cr, 4,80Ni, 0,20N и 0,0005-0,02 мас.% редкоземельных металлов (например, Se, Y, La, Се). Присутствие в сплаве редкоземельных элементов позволяет улучшить антикоррозионную стойкость стали, предотвращая осаждение элементов на границе зерен.

Высокотемпературный ЭПФ (400-450°С) отмечают у нержавеющей стали по патентной заявке US 20130160900. Сталь содержит редкоземельные элементы La и Се (предпочтительно в количестве 0,5-1,0 мас.%. и 0,10-0,50 мас.% соответственно), а также железо, марганец, кремний, хром, никель. Система легирования сплава на основе железа обеспечивает увеличение ЭПФ, увеличение коррозионной стойкости, улучшение обрабатываемости сплавов.

Описано влияние легирования самарием сплавов железа с 30,29-31,32 ат.% никеля: в литых сплавах, содержащих 0,41-1,59 ат.% самария, наблюдалось измельчение зерна, незначительный сдвиг обратного мартенситного превращения в область высоких температур (As=415°С, Af=510°С для сплава Fe68,43Ni29,9Sm1,59) и увеличение степени восстановления формы до 30% (Ю.Н. Коваль, С.А. Пономарева, и др. Характеристики сплавов Fe-Ni-Sm в литом состоянии. Журнал технической физики, 2015 г., т. 85, вып. 4, с. 37-41).

Не выявлена информация об ЭПФ железо-никелевых сплавов с содержанием железа ниже 20 мас %. Однако при исследовании сплавов Fe с 20-33 мас.%. Ni было установлено, что при содержании никеля 20-25% температура начала прямого мартенситного превращения выше 100°С, а обратное мартенситное превращение начинается при температуре выше 450°С и эта температура снижается при увеличении содержания никеля, тогда как степень восстановления изгиба пластинчатых образцов при обратном мартенситном превращении возрастает с 10% (20% Ni) до 35% (33% Ni), оставаясь низкой для практического применения таких сплавов (В.И. Коломыцев, И.А. Лободнюк, Л.Г. Хандрос. Украинский физический журнал, 1979, Т. 24, №3, с. 60-64, прототип).

Получение экономически эффективного (относительно недорогого, технологичного) сплава с эффектом памяти формы в интервале температур около 650-750°С является технической задачей, на решение которой направлено изобретение.

Предлагаемый сплав с высокотемпературным эффектом памяти формы включает железо и никель и отличается тем, что дополнительно содержит диспрозий при следующем соотношении компонентов (мас.%):

никель 8-13
диспрозий 0,0005-0,0200
железо остальное

причем содержание кислорода в сплаве не превышает 0,007 мас.%.

Сплавы указанного состава позволяют получить материал с эффектом памяти формы, характеризующимся степенью восстановления формы выше 60%, предпочтительно выше 70%, в интервале температур 650-750°С. Вследствие низкого содержания кислорода сплавы обладают высокой пластичностью, легко обрабатываются.

Снижение содержания примеси кислорода в сплаве обусловлено микролегированием редкоземельным элементом - диспрозием. При растворении в металле с высокой концентрацией кислорода редкоземельного металла происходит его окисление, образующиеся оксиды редкоземельного элемента в процессе плавки всплывают на поверхность расплава в виде шлака. Химический анализ литого сплава, полученного в процессе вакуумной плавки или в среде инертного газа, показывает снижение содержания диспрозия по сравнению с расчетным составом шихты. Количество диспрозия в шихте, необходимое для получения рафинированного сплава с содержанием диспрозия 0,0005-0,0200 мас.%, зависит от содержания кислорода в шихтовом материале. При использовании в качестве сырья железа с содержанием кислорода не более 0,03 мас.%. введение в сплав около 0,03 мас.% диспрозия обеспечивает требуемое содержание кислорода при соответствующем снижении доли диспрозия в литом сплаве ниже 0,02 мас.%. Помимо раскисляющего, диспрозий оказывает и модифицирующее действие: на сплавах, легированных диспрозием, отмечается уменьшение микрозерна в среднем на 1,5 балла по сравнению с металлом без диспрозия, что положительно сказывается на технологичности сплава. Ниже приведены примеры получения сплавов с высокотемпературным эффектом памяти формы и результаты исследования их свойств.

Пример 1. Получение образцов сплава с высокотемпературным ЭПФ

Железо-никелевые сплавы получают в вакуумной индукционной печи в тиглях на основе периклаза. В качестве шихтовых материалов используют железо АРМКО Тип 1 (содержание кислорода 0,03 мас %), электролитический никель марки H1У и диспрозий металлический марки ДиМ1. Выплавку сплавов проводят в следующем режиме: основные компоненты Fe и Ni загружают в тигель на воздухе, после чего печь вакуумируют до остаточного давления не более 0,66 Па, плавку ведут на максимальной мощности до расплавления металла, расплав дегазируют при температуре 1550°С. Диспрозий добавляют в расплав, сплав перемешивают и разливают в графитовые изложницы с утепляющей графитовой надставкой при температуре 1530-1560°С.

Химический анализ сплавов проводили с использованием атомно-эмиссионного спектрометра с индуктивно-связанной плазмой Varian 730 ES. Содержание кислорода в сплавах определяли с использованием газового анализатора LECO TS600. Химический состав образцов сплавов 1-4, включающих диспрозий, а также расчетное и фактическое содержание диспрозия в сплаве приведены в таблице 1. Сплав 5 не содержит диспрозия и обогащен кислородом. Очевидно, микролегирование сплава диспрозием в заявленных количествах позволяет снизить содержание кислорода в 4-6 раз, до уровня 0,007% масс. и ниже.

Пример 2. Определение механических характеристик сплавов

Для исследования механических характеристик и ЭПФ сплавов были получены деформированные образцы. Из полученных слитков методом горячего прессования на гидравлическом прессе «Блисс» при удельном усилии прессования 1085-1663 МПа были получены прутки диаметром 25 мм. После отжига при температуре 1100°С и закалки в воду прутки разрезали и изготавливали стандартные образцы для определения механических свойств, а также цилиндрические образцы диаметром 6 мм, длиной 10 мм для определения температур мартенситного превращения и степени восстановления формы.

Проведена оценка механических свойств выплавленных сплавов на основе железа с ЭП: прочности, текучести и пластичности сплавов. Характеристики сплавов 2, 4 и 5 представлены в таблице 2.

Данные таблицы 2 позволяют сделать вывод, что микролегированные образцы с высокотемпературным ЭПФ обладают необходимыми прочностными характеристиками и повышенной пластичностью.

Пример 3. Определение характеристик ЭПФ сплавов

Испытания для определения температур мартенситных переходов в полученных сплавах и степени восстановления формы проводили на закалочно-деформационном дилатометре DIL805A/D. Исследования проводили по следующей схеме: образец помещали в дилатометр при комнатной температуре, нагревали в условиях внешней нагрузки, не превышающей 4 МПа, с постоянной скоростью 4°С/сек до температур на 50-100°С выше конца обратного мартенситного превращения (800-1000°С), затем охлаждали с такой же скоростью до температур 100-300°С. По дилатометрическим кривым определяли температуры и дилатометрические эффекты прямого (Ms, Mf, ДЭ1) и обратного (As, Af, ДЭ2) мартенситных превращений. Степень восстановления формы определяли как отношение дилатометрического эффекта обратного мартенситного превращения к дилатометрическому эффекту прямого мартенситного превращения: К=(ДЭ2/ДЭ1)×100%. Данные дилатометрических испытаний приведены в таблице 3.

Характеристики предлагаемых сплавов, приведенные таблице 3, свидетельствуют о проявлении ЭПФ в интервале температур 658-740°С и достаточно высокой степени восстановления формы (62-71%). Достаточно высокие пластические прочностные характеристики новых сплавов позволяют их использовать для изготовления высокотемпературных термочувствительных и исполнительных элементов различных механизмов.

Сплав с высокотемпературным эффектом памяти формы, содержащий железо и никель, отличающийся тем, что он дополнительно содержит диспрозий при следующем соотношении компонентов, мас.%: причем содержание кислорода в сплаве не превышает 0,007 мас.%.
Источник поступления информации: Роспатент

Showing 71-80 of 367 items.
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
Showing 71-80 of 335 items.
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
+ добавить свой РИД