×
12.01.2017
217.015.60f6

Результат интеллектуальной деятельности: СПОСОБ СОХРАНЕНИЯ КАЧЕСТВЕННЫХ ХАРАКТЕРИСТИК КУЛЬТУРЫ in vitro НЕКОТОРЫХ ДРЕВЕСНЫХ ВИДОВ РАСТЕНИЙ (ЛИМОННИК КИТАЙСКИЙ, РОДОДЕНДРОН, СИРЕНЬ, БЕРЕЗА ПОВИСЛАЯ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биотехнологии растений. Изобретение представляет собой способ сохранения качественных характеристик культуры in vitro некоторых древесных видов растений (лимонник китайский, рододендрон, сирень, береза повислая), включающий размножение микропобегов на искусственных питательных средах, где через 7-10 дней после культивирования в стандартных условиях побеги помещают в условия с температурой 4-8°С и уровнем освещенности 500-1000 люкс на срок до 8 (лимонник китайский, береза повислая) или до 12 месяцев (рододендрон, сирень). Изобретение позволяет повысить сохранность качественных характеристик культуры in vitro Лимонника китайского и Березы повислой. 3 табл.

Изобретение относится к области биотехнологии растений и может быть использовано для сохранения качественных характеристик различных древесных культур на таких стадиях культивирования, как мультипликация и укоренение.

Важной составляющей клонального микроразмножения древесных растений является степень омоложения культуры in vitro. Степень омоложения микрорастений способна значительно влиять на коэффициент мультипликации, частоту укоренения микропобегов в условиях in vitro/ex vitro и в случае некоторых древесных культур на эффективность адаптации и скорость первоначального роста побегов на первых этапах адаптации. Согласно данным качественное омоложение культуры in vitro некоторых древесных видов (рододендроны) позволяет на стадии адаптации решить такую проблему, как массовый переход адаптируемых микрорастений в состояние покоя.

Высокая степень омоложения достигается за счет сокращения длины пассажа на стадии мультипликации в сочетании с активным черенкованием микропобегов. В зависимости от вида растений и их исходного физиологического состояния достаточная степень омоложения может достигаться за 4-8 пассажей, что составляет 2,5-5,5 месяцев активной работы с культурой. Однако основным недостатком такого способа размножения является быстрый возврат культуры к исходному, менее ювенильному состоянию в случае удлинения пассажа до 6 и более недель. В случае некоторых древесных видов (береза повислая, рододендроны) возврат к исходному физиологическому состоянию может произойти в случае однократного несвоевременного пересаживания растений на стадии мультипликации. Данная особенность представляет собой проблему в случае необходимости временного депонирования культуры in vitro. Поддержание культуры за счет частого пассирования увеличивает риск инфицирования и потери культуры и приводит к заметному увеличению затрат на производство микрорастений. Помимо стадии мультипликации проблемы могут возникать и на стадии укоренения. Укоренение микрорастений, как правило, производится на питательной среде с редуцированным минеральным составом, что благоприятно сказывается как на частоте укоренения, так и на эффективности роста микропобегов на этой стадии. Однако в случае временного депонирования укорененных растений они начинают голодать на обедненной питательной среде, что приводит либо к частичному отмиранию, либо к уходу растений в состояние покоя, что отрицательно сказывается на эффективности последующей адаптации микрорастений.

Целью предлагаемого изобретения является решение всех вышеуказанных проблем на стадии мультипликации и укоренения.

Поставленная цель достигается за счет того, что контейнеры с эксплантами/микрорастениями на начальных стадиях (до 10 дней) мультипликации/укоренения помещаются в холодильники с температурой 4-8°C и низким уровнем освещения (500-1000 люкс).

Суть изобретения состоит в том, что растения, выращиваемые на питательных средах для мультипликации, а именно лимонник китайский - на питательной среде QL (Quorin M. & Lepoivre P. Elude de milieux adaptes aux cultures in vitro de Prunus // Acta Hort. 1977. V.78. P. 437-442) с добавлением сахарозы 30 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л, никотиновой кислоты 0,5 мг/л, 6-бензиламинопурина (6-БАП) 0,5 мг/л; рододендрон - на половинной по минеральным солям питательной среде WPM (Lloyd, G. and В.H. McCown. 1980 // Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Int. Plant Prop. Soc, Comb. Proc, 30: 421-427) с добавлением сахарозы 30 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л, никотиновой кислоты 0,5 мг/л, N6-(2-Изопентил)аденина (2-iP) 2,0 мг/л и индолилуксусной кислоты (ИУК) 0,5 мг/л; сирень - на питательной среде MS (Murashige T. & Skoog F., A revised medium for rapid growth and bioassays with tobacco tissue culture // Physiol. Plant, 15 (1962) 473-497) с добавлением сахарозы 30 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л, никотиновой кислоты 0,5 мг/л, 6-БАЛ 1,0 мг/л; береза - на питательной среде WPM с добавлением сахарозы 30 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л, никотиновой кислоты, 6-БАП 0,2 мг/л, переносятся на свежую питательную среду, либо на средах для укоренения, а именно лимонник и сирень - ½ QL с добавлением сахарозы 20 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л, никотиновой кислоты 0,5 мг/л, индолилмасляной кислоты (ИМК) 0,1 мг/л; ИУК 0,1 мг/л; рододендрон - ¼ WPM с добавлением сахарозы 10 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л, никотиновой кислоты 0,5 мг/л, ИМК 0,5 мг/л; береза - ½ WPM с добавлением сахарозы 10 г/л, инозитола 100 мг/л, пиридоксина 0,1 мг/л, тиамина 0,1 мг/л, никотиновой кислоты 0,5 мг/л. Через 7-10 дней культивирования в стандартных условиях контейнеры с растениями помещают в холодильники с температурой 4-8°C и уровнем освещения 500-1000 люкс.

Анализ известных способов длительного поддержания качественных характеристик культуры in vitro растений, проведенный по научно-технической и патентной документации, показал, что совокупность существенных признаков заявляемого способа неизвестна из уровня техники, следовательно, он соответствует условию патентоспособности изобретения - «новизна»

Предлагаемый способ реализуется следующим образом.

1. В нестерильных условиях готовится питательная среда. В нее добавляются необходимые количества макро-, микроэлементов, хелата железа, инозитола, объем доводится дистиллированной водой, рН 5,6-5,8 (в среде ½ WPM / ¼ WPM для мультипликации/укоренения рододендронов рН составляет 4,2-4,5). В колбы добавляются навески агара. Среда разливается по колбам, укупоривается фольгой и бумагой, завязывается банковской резинкой. Автоклавирование проводится при 1 атм. (= 1 изб. атм.) в течение 20 минут. В остывшую до 55°C среду в ламинар-боксе добавляются стерильные растворы витаминов, регуляторов роста. Полученный раствор разливается по стерильным культуральным сосудам. Все манипуляции с растительным материалом производятся в стерильных условиях ламинар-бокса. На этапе мультипликации число эксплантов в контейнерах составляет 10-12 шт., а на стадии укоренения 15-21 шт.

2. Через 7-10 дней культивирования на светокультуральных стеллажах при температуре 22-25°C и освещенности 2500-3500 люкс, контейнеры с растениями проверяют на наличие возможной контаминации, выбраковываются контейнеры с контаминацией или подозрением на нее, а остальные помещают в холодильники с температурой 4-8°C и уровнем освещения 500-1000 люкс.

В таблицах 1-3 представлены результаты исследований по оценке условий и продолжительности депонирования растений на стадиях мультипликации и укоренения, обеспечивающих полное сохранение качественных характеристик культуры in vitro.

Продолжительность этапа мультипликации определяется периодом, за который растения в контейнере поглощают большую часть питательных веществ (органических и минеральных), а также регуляторов роста, некоторые из которых склоны к распаду под воздействием физических факторов внешней среды. Сокращения количества доступных питательных веществ одновременно с накоплением в питательной среде продуктов жизнедеятельности растений, приводит к замедлению роста, а в случае большинства древесных культур это может инициировать состояние покоя, сопровождающееся изменениями на биохимическом и физиологическом уровнях. Для предотвращения подобных изменений производится регулярная пересадка растений на свежую питательную среду. Однако при возникновении временной невостребованности продукции (укорененных микрорастений) необходимость частых пересадок растений для сохранения ими требуемых характеристик становится проблемой, поскольку возрастает риск инфицирования и потери культуры (поскольку число культивируемых контейнеров сокращается до разумного минимума) и приводит к заметному увеличению затрат на производство микрорастений.

Известно, что при воздействии низких температур происходит резкое сокращение активности большинства ферментов в растениях (Holaday A.S. et al. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature // Plant Physiol. 1992. V.98. P. 1105-1114) и, как следствие, резкое сокращение физиологической активности. Воздействие низких температур на микрорастения на стадии мультипликации позволяет сохранять основные качественные характеристики до 6 месяцев в случае лимонника китайского и березы повислой и до 12 месяцев в случае рододендронов и сирени (таблица 1). При увеличении длительности воздействия низких температур у некоторых растений появлялись признаки перехода в состояние покоя (возникновение/изменение антоциановой окраски, сбрасывание листьев начиная с нижних ярусов и др.).

Интенсивность освещения в процессе холодового депонирования микрорастений на стадии мультипликации оказывает влияние на качественные характеристики некоторых древесных видов растений. Так, при отсутствии освещения у большинства культур, за исключением сирени, наблюдался некроз апикальной части побега, хотя это не оказывало влияния на эффективность мультипликации. Избыточный уровень освещения (2,5-3,5 тыс. люкс) ускорял процесс возникновения некроза у таких видов, как лимонник китайский и береза повислая. Несмотря на то, что сирень одинаково хорошо сохраняет свои качественные характеристики при любом уровне освещения, в целях универсализации метода предлагается депонировать микрорастения на стадии мультипликации при температуре 4-8°C и уровне освещенности 500-1000 люкс.

Воздействие низких температур на микрорастения на стадии укоренения также обеспечивает сохранение основных качественных характеристик/товарного вида. Этиоляция побегов в процессе хранения и некроз апикальной части серьезное ухудшают товарный вид продукции и влияют на внешний вид/качество адаптированных растений. Для сохранения товарного вида частично укоренившихся микрорастений необходимо обеспечение хотя бы минимального уровня освещенности, поскольку при хранении в холодильнике в темноте побеги лимонника китайского и березы повислой начинали этиолироваться уже через 4 месяца, а побеги рододендрона и сирени - через 6-8 месяцев. Микрорастения, подвергшиеся воздействию низких температур в течение 4 месяцев, независимо от уровня освещенности лучше адаптировались к условиям окружающей среды, чем контрольные растения, что является дополнительным положительным эффектом низких температур. Более длительное хранение сказывается на эффективности адаптации, но различия с контролем были незначительные, при этом предельная продолжительность хранения частично укоренившихся растений лимонника китайского и березы повислой составляет 8 месяцев, а продолжительность хранения растений рододендронов и сирени без потери качественных характеристик может достигать 12 месяцев.

Список таблиц:

Таблица 1. Влияние продолжительности периода воздействия низких температур (4-8°С) на эффективность последующей мультипликации древесных культур.

Таблица 2. Влияние интенсивности освещения в сочетании с длительным воздействием низких температур (4-8°C) на эффективность последующей мультипликации древесных культур.

Таблица 3. Влияние интенсивности освещения в сочетании с длительным воздействием низких температур (4-8°C) на приживаемость (%) при последующей адаптации древесных культур.

Способ сохранения качественных характеристик культуры in vitro некоторых древесных видов растений (лимонник китайский, рододендрон, сирень, береза повислая), включающий размножение микропобегов на искусственных питательных средах, отличающийся тем, что через 7-10 дней после культивирования в стандартных условиях побеги помещают в условия с температурой 4-8°С и уровнем освещенности 500-1000 люкс на срок до 8 (лимонник китайский, береза повислая) или до 12 месяцев (рододендрон, сирень).
Источник поступления информации: Роспатент

Showing 81-90 of 115 items.
30.03.2019
№219.016.f9d0

Система для экспрессии fab-фрагментов антител в метилотрофных дрожжах pichiapastoris, на основе рекомбинантных плазмидных днк ab-hch-his/ppicz_α_a и ab-lch-lambda/ppiczα_a, предназначенных для клонирования вариабельных доменов тяжелой и легкой цепей антител, соответственно

Изобретение относится к биотехнологии. Предложена система для экспрессии Fab-фрагментов антител, состоящая из рекомбинантных плазмидных ДНК Ab-HCh-HIS/pPICZ_α_A и Ab-LCh-LAMBDA/pPICZα_A. Трансформация дрожжей Р. Pastoris указанными плазмидными ДНК позволяет получать очищенные Fab-фрагменты...
Тип: Изобретение
Номер охранного документа: 0002683549
Дата охранного документа: 28.03.2019
09.05.2019
№219.017.4941

Биосенсор на основе клеток escherichia coli, продуцирующих флуоресцентный белок katushka2s, для проведения ультравысокопроизводительного скрининга

Изобретение относится к области биотехнологии, а именно к технологии получения живых флуоресцентных микроорганизмов. Предложен штамм-продуцент флуоресцентного белка Katushka2S на основе штамма Escherichia coli DH5α, трансформированного экспрессионной векторной плазмидой pKatushka2S-B,...
Тип: Изобретение
Номер охранного документа: 0002687046
Дата охранного документа: 06.05.2019
16.05.2019
№219.017.525c

Способ получения рекомбинантного противоопухолевого модифицированного белка dr5-b человека

Изобретение относится к области биотехнологии, конкретно к рекомбинантному получению терапевтических белков, и может быть использовано для получения рекомбинантного противоопухолевого белка DR5-B в Е. coli. Способ предусматривает трансформацию клеток штамма Е. coli SHuffle В полученной...
Тип: Изобретение
Номер охранного документа: 0002687435
Дата охранного документа: 13.05.2019
24.05.2019
№219.017.5ee4

Рекомбинантная плазмидная днк pfuse-marx-29-prad-f2a/bche-14, содержащая ген модифицированной бутирилхолинэстеразы человека, предназначенная для экспрессии гена бутирилхолинэстеразы в клетках млекопитающих для терапии отравлений фосфорорганическими токсинами

Изобретение относится к биотехнологии, а именно: к технологии получения рекомбинантной бутирилхолинэстеразы человека (БуХЭ), и может быть использовано в медицине в терапии отравлений фосфорорганическими токсинами, для терапии отравлений наркотическими веществами типа кокаин, для терапии...
Тип: Изобретение
Номер охранного документа: 0002688729
Дата охранного документа: 22.05.2019
06.07.2019
№219.017.a73f

Генетическая конструкция pa21/fab, для получения одноцепочечного антитела, слитого с константным фрагментом иммуноглобулина человека, стереоселективно взаимодействующего с фосфорорганическими соединениями.

Изобретение относится к биотехнологии, в частности к генетической конструкции pA21/Fab. Изобретение решает задачу получения рекомбинантного одноцепочечного антитела человека, стереоселктивно взаимодействующего с фосфорорганическими соединениями. 3 ил., 3 пр.
Тип: Изобретение
Номер охранного документа: 0002693553
Дата охранного документа: 04.07.2019
17.07.2019
№219.017.b5d6

Клеточная линия hufshkkc6 - продуцент рекомбинантного человеческого фолликулостимулирующего гормона (фсг) и способ получения фсг с использованием данной линии

Изобретение относится к клеточным технологиям и может быть использовано для рекомбинантного получения фолликулостимулирующего гормона (ФСГ) человека. Клеточную линию huFSHKKc6 получают путем трансформации клеток huFSHIK экспрессионной плазмидой длиной 7719 п.о., состоящей из гена устойчивости...
Тип: Изобретение
Номер охранного документа: 0002694598
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b5f8

Клеточная линия крысиной глиомы c6-dda, устойчивая к цитотоксическому действию n-ацилдофаминов, для изучения механизмов действия биоактивных липидов

Изобретение относится к области биотехнологии, а именно к клеточной линии крысиной глиомы С6-DDA. Клеточная линия крысиной глиомы C6-DDA является устойчивой к цитотоксическому действию N-ацилдофаминов как тест-культура для изучения механизмов действия биоактивных липидов, получена на основе...
Тип: Изобретение
Номер охранного документа: 0002694868
Дата охранного документа: 17.07.2019
21.08.2019
№219.017.c1d4

Вспомогательный плазмидный лентивирусный экспрессионный вектор для получения высоких титров vpx-содержащих лентивирусных частиц, обеспечивающий эффективное заражение моноцитов и дендритных клеток человека

Изобретение относится к области биотехнологии и может быть использовано в терапии онкологических заболеваний. Описан универсальный вспомогательный плазмидный экспрессионный лентивирусный вектор для получения высоких титров вирусных частиц, содержащих ген Vpx, включающий в качестве базовых...
Тип: Изобретение
Номер охранного документа: 0002697781
Дата охранного документа: 19.08.2019
22.08.2019
№219.017.c214

Генетическая конструкция для индукции пролиферации периферических моноцитов in vitro

Изобретение относится к области биотехнологии. Предложена генетическая конструкция для индукции пролиферации периферических моноцитов и дендритных клеток in vitro, полученных из крови человека, включающая последовательности, кодирующие транскрипционные факторы с-Мус и BMI1, а также их...
Тип: Изобретение
Номер охранного документа: 0002697797
Дата охранного документа: 19.08.2019
24.08.2019
№219.017.c380

Способ калибровки объема раствора для микроинъекции в предовуляторные ооциты мыши

Изобретение относится к области биотехнологии. Предложен способ калибровки объема раствора от 1 до 10 пл для микроинъекции в предовуляторные ооциты мыши. Способ осуществляют с использованием инъецирующего капилляра с параллельными стенками и известными внешним, внутренним диаметрами, где...
Тип: Изобретение
Номер охранного документа: 0002698140
Дата охранного документа: 22.08.2019
Showing 71-72 of 72 items.
16.05.2023
№223.018.5e96

Способ селекции генотипов малины на содержание антоцианов с помощью молекулярных маркеров

Изобретение относится к биотехнологии, в частности к селекции новых генотипов малины с помощью микросателлитных маркеров (маркерной селекции). Способ заключается в ПЦР-амплификации ДНК, выделенной из анализируемого образца, с использованием набора из четырех пар праймеров на микросателлитные...
Тип: Изобретение
Номер охранного документа: 0002750958
Дата охранного документа: 07.07.2021
16.05.2023
№223.018.5f0f

Способ селекции генотипов земляники садовой на содержание антоцианов с помощью молекулярных маркеров

Изобретение относится к области биотехнологии. Изобретение представляет собой способ селекции генотипов земляники садовой на содержание антоцианов с помощью молекулярных маркеров, заключающийся в ПЦР-амплификации ДНК, выделенной из анализируемого образца, с использованием набора из четырех пар...
Тип: Изобретение
Номер охранного документа: 0002756130
Дата охранного документа: 28.09.2021
+ добавить свой РИД