×
12.01.2017
217.015.5da3

Результат интеллектуальной деятельности: УСТРОЙСТВО ОБЛУЧЕНИЯ И СПОСОБ ОБЛУЧЕНИЯ ДЛЯ ВВОДА ДОЗЫ В ЦЕЛЕВОЙ ОБЪЕМ

Вид РИД

Изобретение

№ охранного документа
0002590892
Дата охранного документа
10.07.2016
Аннотация: Изобретение относится к устройству облучения для ввода распределения дозы в подлежащем облучению целевом объеме, а также к способу облучения, соответствующему устройству облучения. Заявленное устройство (11) содержит ускорительное устройство (27) для предоставления пучка (15) частиц для облучения целевого объема (13), сканирующее устройство (25, 23) для модификации свойства пучка у пучка (15) частиц, так что при работе ускорительного устройства (11) пучок (15) частиц последовательно направляется в различные места в заранее установленном объеме (19) сканирования и таким образом сканируется по объему (19) сканирования. При этом сканирующее устройство (25, 23) выполнено таким образом, чтобы сканировать объем (19) сканирования вдоль постоянной, установленной независимо от целевого объема (13) траектории сканирования и обеспечивать согласование вводимого распределения дозы с целевым объемом (13) тем, что во время сканирования пучка (15) частиц вдоль траектории (21) сканирования интенсивность пучка (15) частиц модулируется. Техническим результатом является возможность регулирования и оптимизации распределения дозы облучения в целевом объеме посредством управления установкой во время облучения. 2 н. и 11 з. п. ф-лы, 2 ил.

Изобретение относится к устройству облучения и способу облучения, с помощью которых посредством пучка частиц в целевой объем может вводиться распределение дозы. Подобное устройство облучения или подобный способ облучения обычно используются в рамках терапии с использованием корпускулярного излучения, чтобы, например, облучать патологически измененную ткань.

В обычных установках терапии с использованием корпускулярного излучения является возможным заполнять облучаемый целевой объем желательным распределением дозы, при этом пучок частиц расширяется и затем посредством вставки, например с помощью коллиматора, и, при необходимости, посредством шарика, просвечиваемого пучком частиц, согласуется с соответствующей формой целевого объема. Это применение также обозначается как пассивное применение пучка.

Наряду с подобным, также называемым пассивным применением пучка, является возможным сравнительно тонким пучком частиц активно сканировать целевой объем. При этом пучок частиц целенаправленно последовательно направляется на те точки растра, в которых в целевом объеме должна вводиться доза, до тех пор, пока не будет достигнуто желательное распределение дозы в целевом объеме. Сканирование также обозначается как активное применение пучка. При этом, в общем случае, проходится криволинейно ограниченный целевой объем. Это означает, что «траектория записи», вдоль которой пучок частиц сканирует целевой объем, - например, посредством построчного зондирования - согласуется с конкретной формой целевого объема.

Задачей изобретения является предложить устройство облучения и способ облучения, с помощью которых желательное распределение дозы в целевом объеме может обеспечиваться при одновременном предпочтительном управлении установкой.

Эта задача решается признаками независимых пунктов формулы изобретения. Предпочтительные варианты осуществления изобретения реализуются признаками зависимых пунктов формулы изобретения.

Соответствующее изобретению устройство облучения для ввода распределения дозы в подлежащем облучению целевом объеме содержит:

- ускорительное устройство для предоставления пучка частиц для облучения целевого объема,

- сканирующее устройство для модификации свойства пучка у пучка частиц, так что при работе устройства облучения пучок частиц последовательно направляется на различные места в заранее установленном объеме сканирования, и таким образом осуществляется сканирование по объему сканирования,

причем сканирующее устройство выполнено таким образом, чтобы

- сканировать объем сканирования вдоль постоянной, установленной независимо от целевого объема траектории сканирования и

- обеспечивать согласование вводимого распределения дозы с целевым объемом тем, что во время сканирования пучка частиц вдоль траектории сканирования интенсивность пучка частиц модулируется.

С помощь устройства облучения целевой объем можно быстро зондировать пучком частиц.

При этом в основе изобретения лежит знание о том, что зондирование с траекторией сканирования, которая согласована с целевым объемом, - как это выполняется в обычных установках, - связано с недостатками. Траектория сканирования, которая согласована с целевым объемом, означает то, что сканирующее устройство таким образом устанавливает отклонение и глубину пучка частиц, что пучок частиц в принципе направляется только на точки растра целевого объема.

Если точка растра достаточно облучена, сканирующее устройство устанавливает следующую точку растра целевого объема, так что она затем облучается. Таким способом можно целевой объем обычных установок заполнять желательной дозой.

Так как облучаемый целевой объем обычно по своему положению, величине и форме является переменным и индивидуально различающимся, сканирующее устройство должно постоянно согласовывать траекторию сканирования с целевым объемом. Эта гибкость должна отражаться в системе управления установкой, которая из-за этого является сравнительно затратной, чтобы предоставлять возможность постоянно согласовывать траекторию сканирования с индивидуальными, облучаемыми объемами сканирования.

В соответствующем изобретению устройстве облучения, напротив, траектория сканирования устанавливается независимо от облучаемого целевого объема. Траектория сканирования может, например, в сканирующем устройстве или в его управляющем устройстве сохраняться заранее установленной. Это означает, что способ, каким сканируется сканируемый объем, устанавливается уже заранее и без точного знания точной геометрии, то есть величины, формы и положения целевого объема.

Также объем сканирования может устанавливаться заранее, например, посредством загрузки в управляющее устройство. Объем сканирования может также устанавливаться заранее независимо от целевого объема, то есть и здесь без точного знания его точной геометрии.

Это имеет преимущество, заключающееся в том, что отклонение луча и глубина модуляции могут выполняться с постоянным оптимизированным расположением.

Это также включает то, что могут устанавливаться несколько различных объемов сканирования, например с различной формой, величиной и положением, и что затем выбирается один из объемов сканирования. То же самое справедливо и для траектории сканирования. И здесь может устанавливаться несколько траекторий сканирования, а для облучения затем выбирается одна траектория сканирования. Несколько объемов сканирования и несколько траекторий сканирования установлены независимо от точных геометрических размеров целевого объема, например, на подготовительном этапе.

В одной форме выполнения сканирующее устройство может выполняться таким образом, чтобы зондировать траекторию сканирования со скоростью зондирования, независимой от целевого объема. Это означает, что временная последовательность зондирования устанавливается независимо от целевого объема.

Согласование затем вводимой, локальной дозы с желательным распределением заданной дозы для целевого объема теперь определяется не через геометрию процесса сканирования, а через модуляцию интенсивности пучка, с помощью которого в течение процесса сканирования облучается целевой объем.

При этом может произойти, что к определенным моментам времени в течение процесса облучения при зондировании траектории сканирования сканирующее устройство устанавливается таким образом, что пучок частиц выходит за пределы целевого объема. Это имеет место тогда, когда целевой объем меньше, чем объем сканирования. Однако в эти моменты времени интенсивность устанавливается в нуль, так что облучение при этом не происходит. Интенсивность только тогда вновь устанавливается на значения, отличные от нуля, когда сканирующее устройство вновь устанавливается таким образом, чтобы пучок частиц при зондировании траектории сканирования вновь облучал бы внутри целевого объема. Поэтому сканирующее устройство устанавливается при сканировании для зондирования траектории пучка, а именно, независимо от того, нацеливался бы пучок частиц внутри или вне целевого объема. Корректное заполнение дозой достигается только посредством модуляции интенсивности.

В целом, процесс сканирования, то есть объем сканирования, траектория сканирования и/или скорость зондирования, выполняется независимо от целевого объема. Это позволяет осуществить заметно более простое выполнение управления устройством облучения. Устройство облучения может тогда оптимизироваться для траектории сканирования, так что эта траектория сканирования может тогда зондироваться особенно эффективно.

Например, сканирующее устройство может иметь один или несколько отклоняющих электромагнитов, с помощью которых пучок частиц может отклоняться изменяемым образом в своем боковом направлении. Отклоняющий электромагнит при работе устройства облучения может работать теперь с постоянной частотой зондирования.

Отклоняющий(е) магнит(ы) может тогда оптимизироваться для этой постоянной частоты отклонения, например, отклоняющий электромагнит может функционировать при электрическом резонансе. Тем самым при невысоких затратах может достигаться очень быстрое и интенсивное отклонение.

В одной форме выполнения сканирующее устройство может выполнять изменение энергии пучка частиц для модуляции глубины проникновения согласно предварительно заданному образцу. Так, в ускорительном устройстве, которое обеспечивает возможность ускорения заряженных частиц с помощью высокочастотного (ВЧ) поля, можно управлять модуляцией энергии пучка частиц и, тем самым, глубины проникновения за счет модуляции ВЧ мощности и/или ВЧ фазы. Эта модуляция может управляться посредством сканирующего устройства.

Постоянная программа для управления энергией и, тем самым, глубиной проникновения является особенно предпочтительной, так как гибкое управление ускорительным устройством для достижения различных ступеней энергии технически обычно может быть реализовано лишь с трудом и относительно негибким образом.

За счет постоянной программы зондирования можно оптимизировать компоненты сканирующего устройства для быстрого зондирования. При необходимости может выполняться сканирование всего объема сканирования в единственной импульсной операции ускорителя, которая может длиться лишь несколько микросекунд, например, менее 50 мкс или меньше, чем 20 мкс или 10 мкс. За счет этого можно эффективным образом избегать артефактов движения, которые приводят к неверным распределениям дозы, которые возможны при обычных, сравнительно медленных, согласованных с целью сканированиях.

Сканирующее устройство может быть, в частности, выполнено так, чтобы пучок частиц многократно сканировать в объеме сканирования, например, многократно вдоль траектории сканирования. Объем сканирования при этом многократно перезаписывается. За счет этого можно достичь лучшего распределения дозы при недостаточно точной модуляции интенсивности пучка. Но также можно аккумулировать достаточно высокую дозу, если при однократном зондировании траектории сканирования может быть введена доза, слишком низкая, чтобы достичь заданного распределения дозы.

Соответствующий изобретению способ облучения для ввода распределения дозы в облучаемом целевом объеме содержит следующие этапы:

предоставление пучка частиц и направление пучка частиц в облучаемый целевой объем,

причем в течение облучения по меньшей мере одно свойство пучка у пучка частиц изменяется, так что пучок частиц последовательно направляется на различные места в предварительно установленном объеме сканирования и за счет этого сканируется по объему сканирования,

причем пучок частиц сканируется по объему сканирования вдоль постоянной, независимо от целевого объема заранее установленной траектории сканирования, и

причем в целевом объеме достигается желательное подлежащее вводу распределение дозы, причем в течение сканирования пучка частиц вдоль траектории сканирования интенсивность пучка частиц модулируется.

Траектория сканирования может зондироваться с заранее установленной, независимой от целевого объема скоростью зондирования.

Пучок частиц может отклоняться посредством отклоняющего электромагнита переменным образом, причем отклоняющий электромагнит работает с постоянной частотой отклонения. Отклоняющий электромагнит может работать при электрическом резонансе.

Вариация энергии пучка частиц для модуляции глубины проникновения может выполняться согласно предварительно определенной программе. Вариация энергии может осуществляться посредством модуляции ВЧ мощности и/или ВЧ фазы пучка частиц ускорительного устройства.

Пучок частиц может сканироваться многократно вдоль траектории сканирования.

Приведенное выше и изложенное далее описание отдельных признаков, их преимуществ и их воздействий относится как к категории устройства, так и к категории способа, без отдельного упоминания об этом в явном виде; отдельно раскрытые признаки могут также быть существенными для изобретения в других комбинациях, чем показанные.

Формы выполнения изобретения поясняются далее более подробно, однако не предусматривается ограничение ими. На чертежах показано следующее:

фиг.1 - схематичный вид устройства облучения для облучения целевого объема,

фиг.2 - схематичная диаграмма последовательности операций формы выполнения соответствующего изобретению способа.

На фиг.1 показан схематичный вид компонентов устройства 11 облучения, с помощью которого облучается целевой объем 13 с помощью пучка 15 частиц.

Целевой объем 13, который должен нагружаться заданной дозой, находится в объекте 17. Целевой объем 13 может, например, быть неравномерно сформировавшейся опухолью в организме пациента; но также возможно, что облучается муляж для исследовательских целей или муляж для целей тестирования или калибровки.

Для облучения целевого объема 13 пучок 15 частиц направляется по объему сканирования, который больше, чем неравномерно сформированный целевой объем 13. Пучок частиц направляется при этом вдоль траектории 21 сканирования.

Сканирующее устройство устройства 11 облучения имеет при этом две пары 23 отклоняющих магнитов, с помощью которых пучок 15 частиц может отклоняться в двух ортогональных друг другу направлениях перпендикулярно его направлению хода. Управляющее устройство 25 управляет, в том числе, парами 23 отклоняющих магнитов. Отклонение осуществляется согласно заранее установленной программе.

К тому же ускорительное устройство 27 устройства 11 облучения может с помощью управляющего устройства 25 управляться таким образом, что пучок 15 частиц варьируется по своей энергии в соответствии с установленной программой.

За счет комбинации отклоняющих магнитов 23 и вариации энергии посредством ускорительного устройства 27 пучок 15 частиц направляется по объему сканирования вдоль траектории 21 сканирования. Само сканирование, то есть пространственное направление пучка 15 частиц, осуществляется независимо от облучаемого целевого объема 13.

Однако для того чтобы в целевой объем 13 вводилось желательное распределение дозы, осуществляется модуляция интенсивности пучка 15 частиц во время сканирования пучка вдоль траектории 21 сканирования. В тех местах, в которых пучок 15 частиц попадал бы в область вне целевого объема 13 в объеме 19 сканирования, интенсивность пучка 15 частиц регулируется до нуля.

Как только пучок 15 частиц посредством сканирующего устройства направляется в точки внутри целевого объема 13, интенсивность пучка 15 частиц устанавливается на значение, отличающееся от нуля, так что в этих точках действительно вводится доза облучения.

Согласование вводимого распределения дозы с индивидуальными условиями целевого объема 13 осуществляется таким образом только посредством целенаправленного управления интенсивностью пучка 13 частиц. Пространственные свойства траектории 21 сканирования выбираются независимо от целевого объема 13.

Фиг.2 показывает схематичное представление этапов способа, которые выполняются в одной форме выполнения способа, соответствующего изобретению.

На первом этапе устанавливается объем сканирования независимо от формы, величины и/или положения облучаемого целевого объема (этап 41).

Также определяется траектория сканирования, на которую устанавливается сканирующее устройство устройства облучения, так что пучок частиц направляется вдоль траектории сканирования. Это осуществляется также независимо от формы, величины и/или положения облучаемого целевого объема (этап 43).

Также скорость сканирования устанавливается независимо от целевого объема (этап 45).

Затем с помощью ускорительного устройства генерируется пучок частиц и направляется в объем сканирования. Зондирование объема сканирования осуществляется вдоль траектории сканирования. Всегда, в том случае, когда пучок частиц сканирует в пределах объема сканирования через целевой объем, интенсивность устанавливается на значение, отличное от нуля, так что действительно в целевой объем вводится доза облучения (этап 47).

При сканировании пучка частиц могут, например, применяться отклоняющие электромагниты, которые работают с постоянной частотой отклонения в электрическом резонансе, чтобы отклонять пучок частиц в поперечном направлении (этап 49).

Также может выполняться управление глубиной проникновения пучка частиц посредством постоянной программы для управления энергией пучка частиц, при котором фаза или ВЧ мощность ускорителя частиц соответственно модулируется (этап 51).

Согласование распределения дозы в целевом объеме осуществляется посредством интенсивности пучка частиц, которая модулируется во время сканирования (этап 53).

Объем сканирования может многократно сканироваться до тех пор, пока в целевом объеме не будет достигнуто желательное распределение дозы (этап 55).

Перечень ссылочных позиций

11 устройство облучения

13 целевой объем

15 пучок частиц

17 объект

19 объем сканирования

21 траектория сканирования

23 отклоняющий магнит

25 управляющее устройство

27 ускорительное устройство

41 этап 41

43 этап 43

45 этап 45

47 этап 47

49 этап 49

51 этап 51

53 этап 53

55 этап 55


УСТРОЙСТВО ОБЛУЧЕНИЯ И СПОСОБ ОБЛУЧЕНИЯ ДЛЯ ВВОДА ДОЗЫ В ЦЕЛЕВОЙ ОБЪЕМ
УСТРОЙСТВО ОБЛУЧЕНИЯ И СПОСОБ ОБЛУЧЕНИЯ ДЛЯ ВВОДА ДОЗЫ В ЦЕЛЕВОЙ ОБЪЕМ
Источник поступления информации: Роспатент

Showing 411-420 of 1,429 items.
10.08.2015
№216.013.6e2a

Способ коммутации фазы выпрямителя тока с биполярными транзисторами с изолированным затвором (igbt) с обратной проводимостью

Изобретение относится к способу коммутации от работающего в диодном режиме биполярного транзистора с изолированным затвором (IGBT) (Т1) с обратной проводимостью на работающий в IGBT-режиме IGBT (Т2) с обратной проводимостью. Технический результат заключается в обеспечении наименьшей...
Тип: Изобретение
Номер охранного документа: 0002559760
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6ee3

Ротор турбомашины и способ его сборки

Ротор турбомашины содержит вращающийся элемент с установленной на нем лопаткой. Лопатка содержит хвостовик с выступающей структурой, формирующей стопорную поверхность, поддерживающую установленный хвостовик относительно вращающегося элемента под действием силы, направленной радиально внутрь....
Тип: Изобретение
Номер охранного документа: 0002559957
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f91

Выхлопной диффузор газовой турбины

Выхлопной диффузор (10) для газовой турбины имеет расширяющийся в направлении выхода (20) диффузора проточный канал (22), в центре которого предусмотрен распространяющийся в осевом направлении направляющий аппарат (14). Направляющий аппарат 14 по меньшей мере на одном осевом участке своей...
Тип: Изобретение
Номер охранного документа: 0002560131
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fe1

Способ и устройство управления для определения длины по меньшей мере одного участка пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте и может использоваться для определения длины участка пути. Техническое решение заключается в определении длины по меньшей мере одного участка пути, регистрации сообщений о прохождении, вызванных прохождением...
Тип: Изобретение
Номер охранного документа: 0002560211
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72d9

Система, включающая в себя уплотнение вала

Изобретение касается уплотнения вала, которое включает в себя более одного уплотнительного модуля, по меньшей мере один подвод жидкости и один отвод жидкости, снабженной главным уплотнением, на которое приходится наибольшая часть разности давлений. Второе главное уплотнение выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002560971
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7383

Динамоэлектрическая машина с воздушно-водяным охлаждением

Изобретение относится к электротехнике, к охлаждению динамоэлектрических машин. Технический результат состоит в улучшении охлаждения. Ветрогенератор содержит выполненный в виде листового пакета статор (1) с системой обмотки, образующей на торцах статора (1) лобовые части (16) обмотки....
Тип: Изобретение
Номер охранного документа: 0002561146
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74cd

Способ эксплуатации подводной лодки, а также подводная лодка

Группа изобретений относится к оборудованию для подводных лодок. При способе эксплуатации подводной лодки используют приводной двигатель, подпитываемый через импульсные вентильные преобразователи частоты. В зависимости от вариантов подключения его фазных обмоток получают два режима его работы...
Тип: Изобретение
Номер охранного документа: 0002561476
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74d9

Защитный поддон для высокоскоростных поездов

Изобретение относится к железнодорожному транспорту, в частности к высокоскоростным поездам. Защитный поддон для высокоскоростных поездов расположен под полом (1) вагона по всей пространственной длине подполья и выполнен в виде каркаса (2), который обшит защитным полом (3) и боковыми несущими...
Тип: Изобретение
Номер охранного документа: 0002561488
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7587

Исполнительный элемент для тормозной системы рельсового транспортного средства

Исполнительный элемент (7) для рельсового транспортного средства содержит блок (6) определения заданного значения, причем блок (6) определения заданного значения на выходе (А1) предоставляет заданное значение (SSoll) или скорректированное под воздействием редуцирующего сигнала (RS) устройства...
Тип: Изобретение
Номер охранного документа: 0002561662
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7658

Способ и устройство для управляющей коммуникации между сцепленными частями железнодорожного состава

Изобретение относится к области автоматики и телемеханики и может использоваться для управления коммуникациями между сцепленными частями железнодорожного состава. Техническое решение включает в себя сцепленные части железнодорожного состава, имеющие механические и электрические (ЕК) сопряжения,...
Тип: Изобретение
Номер охранного документа: 0002561885
Дата охранного документа: 10.09.2015
Showing 411-420 of 948 items.
20.06.2015
№216.013.56d8

Компонент из жаропрочного сплава и суспензионная композиция для компонента из жаропрочного сплава

Изобретение относится к суспензиям для алюминизации компонентов из жаропрочного сплава и может быть использовано для изготовления деталей, работающих в условиях воздействия горячих коррозионно-активных газов, например газотурбинных компонентов. Суспензия содержит органическое связующее и...
Тип: Изобретение
Номер охранного документа: 0002553762
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.575c

Способ синтеза фуллерида металлического нанокластера и материал, включающий фуллерид металлического нанокластера

Изобретение относится к способу синтеза фуллерида металлического нанокластера и к материалу, включающему фуллерид металлического нанокластера. Способ синтеза фуллерида металлического нанокластера включает механическое сплавление металлических нанокластеров с размером частиц между 5 нм и 60 нм с...
Тип: Изобретение
Номер охранного документа: 0002553894
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.592a

Газотурбинный двигатель и способ эксплуатации газотурбинного двигателя

Газотурбинный двигатель содержит ротор, радиально наружную и внутреннюю статорные части, между которыми проходит воздушный канал компрессора, кольцевой зазор между ротором и радиально внутренней статорной частью, а также выпускной трубопровод. Ротор включает роторную часть подшипника,...
Тип: Изобретение
Номер охранного документа: 0002554367
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59cf

Способ и устройство для безопасной передачи данных

Изобретение относится к способу памяти данных для хранения компьютерного программного продукта и устройству для безопасной передачи данных. Технический результат заключается в повышении безопасности передачи данных. Устройство содержит блок (2) предоставления для предоставления соединений (DV)...
Тип: Изобретение
Номер охранного документа: 0002554532
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a7e

Транспортное средство с установкой водоснабжения и охлаждения

Изобретение относится к транспортному средству, в частности к рельсовому транспортному средству. Транспортное средство включает установку водоснабжения для потребителей (4, 5) воды и установку (1) охлаждения, которая имеет сливной трубопровод для отвода конденсационной воды, возникающей при...
Тип: Изобретение
Номер охранного документа: 0002554707
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a9c

Турбинный аэродинамический профиль

Турбинный аэродинамический профиль содержит тело аэродинамического профиля, систему теплового защитного покрытия, присутствующую в покрытой зоне поверхности, и непокрытую зону поверхности, в которой система теплового защитного покрытия отсутствует. Непокрытая зона поверхности проходит на...
Тип: Изобретение
Номер охранного документа: 0002554737
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b19

Система управления

Изобретение относится, в том числе, к центральному устройству (110) для системы (100) управления для управления системой (10) передачи энергии, имеющей генераторы (30-32) энергии и потребители (40-45) энергии, причем центральное устройство выполнено с возможностью, на основе текущего и/или...
Тип: Изобретение
Номер охранного документа: 0002554862
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b4d

Рельсовое транспортное средство, снабженное устройством защиты от травмирования дверями

Изобретение относится к железнодорожному транспорту. Рельсовое транспортное средство снабжено в области двери устройством (1) защиты от травмирования дверями с бесконтактным принципом действия. Устройство (1) защиты от травмирования дверями снабжено одним внутренним и одним наружным...
Тип: Изобретение
Номер охранного документа: 0002554914
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c9d

Дисковое тормозное устройство для рельсовых транспортных средств

Изобретение относится к области транспортного машиностроения, а именно к дисковым тормозным устройствам рельсовых транспортных средств. Дисковое тормозное устройство содержит тормозной диск для установки на шасси и тормозную систему для обеспечения тормозного усилия. Тормозная система включает...
Тип: Изобретение
Номер охранного документа: 0002555250
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5df0

Выдвижная подножка для рельсового транспортного средства

Изобретение относится к области транспортного машиностроения. Выдвижная подножка для установки под дверным проемом в боковой стенке рельсового транспортного средства имеет корпус и выдвигаемую горизонтально из корпуса платформу подножки. На переднем участке платформы подножки образована система...
Тип: Изобретение
Номер охранного документа: 0002555589
Дата охранного документа: 10.07.2015
+ добавить свой РИД