×
12.01.2017
217.015.57e4

СПОСОБ ДОБЫЧИ ГАЗОВЫХ ГИДРАТОВ ИЗ ПРИДОННЫХ СЛОЕВ МОРЕЙ, ОКЕАНОВ И ОЗЕР

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к газонефтяной промышленности, а более конкретно к разработке придонных залежей газовых гидратов. В способе добычи аквальных газовых гидратов из придонных слоев морей, океанов и озер, включающем прокладку трубопровода с платформы до залежей гидратов, накачку морской воды в емкость с последующей ее закачкой в трубопровод, разрушение газового гидрата водой из трубопровода и откачку смеси воды и газа на поверхность платформы, добычу осуществляют при помощи наночастиц-фуллеренов, добавленных в емкость с морской водой в соотношении 1 наночастица к 15-25 ячейкам газового гидрата, при этом подачу полученного состава осуществляют с ускорением на выходе из трубопровода с помощью гидромониторной насадки. Изобретение развито в зависимом пункте формулы. Технический результат - контролируемое разрушение залежи газовых гидратов. 1 з.п. ф-лы, 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к газонефтяной промышленности, а более конкретно к разработке придонных залежей газовых гидратов.

Известен способ добычи гидратов природного газа - термальное воздействие (Воробьев А.Е., Малюков В.П. Газовые гидраты. Технологии воздействия на нетрадиционные углеводороды. Учебное пособие. - 2-е изд., испр. доп. - М. РУДН, 2009. - с. 184-185). Способ основан на применении диссоциации - процесса, в ходе которого вещество распадается на более простые составляющие. В случае с гидратами природного газа диссоциация проходит при увеличении температуры и снижении давления, когда кристаллы льда тают или изменяют свою форму, тем самым высвобождая молекулы природного газа, заключенные внутри кристалла.

Способ термального воздействия основан на подаче тепла внутрь кристаллической структуры гидрата с целью повышения температуры и ускорения процесса диссоциации. Практическим примером такого метода может служить накачивание теплой морской воды внутрь слоя гидратов газа, залегающего на дне моря. Как только газ начнет высвобождаться из слоя морских отложений, его можно будет собрать. Недостатком данного способа являются высокие энергозатраты, необходимые на нагрев требуемого количества воды, которая подается для разрушения гидратов. Например, для оттаивания льда требуется 336 кДж/кг энергии, а для разложения газового гидрата - 450 кДж/кг энергии (В. Якушев. Газовый источник, способный перевернуть мировой рынок энергии. - ЭСКО. Электронный журнал энергетической компании «Экологические системы», 2009, №3. http://www.Journal.esco.co.ua/2009_3/art052.htm).

Известен способ и устройство для добычи подводных газовых гидратов, заключающийся в том, что прокладывают специальный трубопровод с платформы на поверхности моря до залежи газовых гидратов на морском дне. Согласно способу по внутренней трубе подается морская вода, нагретая до 30-40°C, непосредственно к месторождению газовых гидратов, которые начинают плавиться, при этом из них выделяются пузырьки газообразного метана, которые вместе с водой поднимаются по внешней трубе наверх, к платформе, где метан отделяется от воды и подается в цистерны или в магистральный трубопровод, а теплая вода снова закачивается вниз, к залежам газовых гидратов (В. Фрадкин. Газ на дне океана как альтернативный энергоноситель. Источник: Газовые гидраты, http://n-t.ru/tp/ie/gn.htm)

Компьютерное моделирование процесса термального воздействия на гидраты с использованием горячей воды и пара показало, что объем газа, высвобождаемый таким методом, достаточно велик для добычи, но не контролируем. Также существенны затраты на добычу газа за счет нагрева воды, которую нагнетают в газогидратный пласт для его разрушения.

Наиболее близким по существенным признакам и технической сущности к предлагаемому изобретению способ добычи подводных залежей газовых гидратов и подводный добычный комплекс газовых гидратов, предложенный в патенте RU 2489568. Согласно этому изобретению прокладывают трубопровод с платформы на поверхности моря до залежей газовых гидратов на морском дне, состоящий из внешней и внутренней труб. По внутренней трубе из емкости на платформе подают морскую воду, нагретую до 30-40°C°, непосредственно к месторождению газовых гидратов. Транспортируют пузырьки газообразного метана вместе с водой по внешней трубе наверх - к платформе. Отделяют метан от воды. Подают метан в цистерны или в магистральный трубопровод. При подаче морской воды, нагретой до 30-40 C°, подают гранитную крошку в пропорции 1:2 для заполнения внутреннего объема пласта, освободившегося при извлечении газовых гидратов. Подводный добычный комплекс включает платформу с трубопроводом, состоящим из внутренней трубы для подачи морской воды непосредственно к месторождению газовых гидратов, нагретой до 30-40°C°, и гранитной крошки в пропорции 1:2, и внешней трубы для транспортировки пузырьков газообразного метана вместе с водой наверх к платформе для отделения метана от воды. Кроме того, имеются насосы, газотурбинная установка мощностью 6 МВт и теплосиловая установка для вырабатывания энергии за счет термобарической разности морской воды. При этом платформа выполнена в виде подвижного морского аппарата с погружаемым тендером посредством телескопического устройства, внутри которого размещен трубопровод, выполненный из пропилена.

Недостатком рассмотренного способа является то, что в нем не решена проблема неконтролируемого разрушения газовых гидратов. Этот процесс плохо предсказуемый, в результате которого может произойти выброс большого количества газа. Как следствие, главным недостатком является низкая степень управления процессом разложения газогидратов.

Техническим результатом изобретения является контролируемое разрушение залежи газовых гидратов.

Технический результат достигается тем, что способ добычи аквальных газовых гидратов из придонных слоев морей, океанов и озер, включающий прокладку трубопровода с платформы до залежей гидратов, накачку морской воды в емкость с последующей ее закачкой в трубопровод, разрушение газового гидрата водой из трубопровода и откачку смеси воды и газа на поверхность платформы, при этом добычу аквальных газогидратов осуществляют при помощи наночастиц-фуллеренов, добавленных в емкость с морской водой в соотношении 1 наночастица к 15-25 ячейкам газового гидрата, при этом подачу полученного состава осуществляют с ускорением на выходе из трубопровода с помощью гидромониторной насадки. Кроме того, количество наночастиц составляет 120-150 тыс./л подаваемой на разрушение залежи воды.

Способ осуществляется следующим образом. Передвижной комплекс разработки придонных газовых гидратов включает: плавучую платформу с трубопроводом, состоящим из внутренней трубы для подачи морской воды с наночастицами-фуллеренами (C60) непосредственно к месторождению газовых гидратов и внешней трубы с погружным вытяжным колпаком для транспортировки пузырьков газообразного метана вместе с водой наверх к платформе для отделения метана от воды и последующего его сжатия при использовании компрессорной станции. Также, в передвижной комплекс входят насосы, емкость, магистральный трубопровод, устройство соединения магистрального трубопровода с платформой, телескопическое устройство. Прокладывают закачной трубопровод (пульпопровод, газопровод) с плавучей платформы на поверхности моря до залежей газовых гидратов на морском дне, состоящий из внешней и внутренней труб. Морскую воду подают из емкости на платформе, в которую предварительно добавлены наночастицы-фуллерены (C60) в соотношении 1 наночастица к 15-25 ячейкам газового гидрата, что обусловлено длиной пути наночастиц по поверхности залежи, определенной первоначальной скоростью частицы, ее массой и поверхностью залежи, которые в процессе контакта разрушают залежь газового гидрата в необходимых, контролируемых объемах. Процесс осуществляется за счет прикрепления к внутреннему трубопроводу гидромониторной насадки и добавления в емкость на платформе в морскую воду наночастиц-фуллеренов (С60). Концентрация наночастиц фуллеренов (C60) в литре морской воды составляет 120-150 тыс. штук. Добавление меньшего количества наночастиц будет неэффективным, а большее - затратным.

По внутренней трубе, на конце которой расположена гидромониторная насадка, осуществляют подачу полученного состава с ускорением на выходе из закачного трубопровода (пульпопровода, газопровода), что обусловлено термобарическими (равновесными) условиями существования газогидратов (Воробьев А.Е., Молдабаева Г.Ж., Чекушина Е.В., Синченко А.В. и др. Развитие грязевого вулканизма и гидратоносность аквальных залежей. Монография. - Севастополь.: Рибэст, 2012 - с. 25-34) и определяется устойчивостью ячеек газовых гидратов. По внешней трубе, на конце которой прикреплен погружаемый тендер, посредством телескопического устройства с размещенным внутри закачным трубопроводом, происходит подача смеси газа и воды к платформе. Здесь отделяют метан от воды и сжимают его в компрессорной станции. Далее подают метан в цистерны или в магистральный трубопровод.

Пример 1.

В емкость с морской водой, установленной на платформе, добавляли наночастицы-фуллерены в соотношении 1 наночастица к 15 ячейкам газового гидрата, концентрация на литр воды составила 120 тыс. наночастиц. Морскую воду с наночастицами подавали в закачной трубопровод по внутренней трубе, подсоединенный к емкости, и направляли к поверхности залежи газогидратов на дне моря. На выходе из закачного трубопровода движение состава получало ускорение с помощью гидромониторной насадки. После разрушения газового гидрата по внешней трубе смесь газа и воды подавали к компрессорной станции, расположенной на платформе. Полученный метан подавали в трубопровод. В ходе процесса разрушения газового гидрата в районе морской залежи не наблюдалось выбросов или взрыва газа, высвобожденного из газового гидрата.

Пример 2.

В емкость с морской водой, установленной на платформе, добавляли наночастицы - фуллерены в соотношении 1 наночастица к 20 ячейкам газового гидрата, концентрация на литр воды составила 150 тыс. наночастиц. Морскую воду с наночастицами подавали в закачной трубопровод по внутренней трубе, подсоединенный к емкости, и направляли к поверхности залежи газогидратов на дне моря. На выходе из закачного трубопровода движение состава получало ускорение с помощью гидромониторной насадки. После разрушения газового гидрата в большем объеме, чем в примере 1, по внешней трубе смесь газа и воды подавали к компрессорной станции, расположенной на платформе. Полученный метан подавали в трубопровод. В ходе процесса разрушения газового гидрата в районе морской залежи не наблюдалось выбросов или взрыва газа высвобожденного из газового гидрата.

В результате происходит контролируемое разрушение залежи газовых гидратов, вследствие чего дебит добываемого газа из аквальных газогидратных месторождений является контролируемым, за счет использования водного раствора, обогащенного наночастицами (фуллеренами), которые предотвращают саморазложение газа до его контролируемого отбора из залежи путем поячеечного разрушения гидратов.

Источник поступления информации: Роспатент

Showing 21-30 of 53 items.
19.10.2018
№218.016.93f0

Средство, обладающее антимикотической активностью на основе цветков трехреберника продырявленного

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему антимикотическим действием. Средство, обладающее антимикотическим действием, содержащее компоненты, извлеченные экстракцией из воздушно-высушенных цветков трехреберника продырявленного в соотношении...
Тип: Изобретение
Номер охранного документа: 0002669931
Дата охранного документа: 17.10.2018
06.12.2018
№218.016.a41a

Теплофикационная паротурбинная установка

Изобретение относится к энергомашиностроению и может применяться в теплофикационной паротурбинной установке, работающей в режиме полного закрытия регулирующей диафрагмы. Теплофикационная паротурбинная установка содержит проточную часть турбины с регулирующей диафрагмой, выхлопной патрубок,...
Тип: Изобретение
Номер охранного документа: 0002674108
Дата охранного документа: 04.12.2018
06.12.2018
№218.016.a44a

Хирургическое лечение глаукомы методом синустрабекулэктомии с базальной иридэктомией в сочетании с глубокой склерэктомией и активацией увеосклерального пути аутосклерой

Изобретение относится к области медицины, а именно к офтальмологии. Для хирургического лечения глаукомы проводят разрез конъюнктивы, отсепаровку конъюнктивы и теноновой оболочки от склеры, выкраивание склерального лоскута на 2/3 толщины склеры основанием к лимбу, синустрабекулэктомию,...
Тип: Изобретение
Номер охранного документа: 0002674088
Дата охранного документа: 04.12.2018
09.12.2018
№218.016.a524

Средство, обладающее антимикробным и антимикотическим действием

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему противомикробным и антимикотическим действием. Средство, обладающее противомикробным и антимикотическим действием, содержащее извлеченные перколяцией из воздушно-высушенных плодов шиповника и рябины...
Тип: Изобретение
Номер охранного документа: 0002674334
Дата охранного документа: 07.12.2018
13.01.2019
№219.016.af17

Способ хирургического лечения глаукомы

Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для хирургического лечения глаукомы. Проводят обратный циклодиализ на глубину 5-6 мм на 4-5 часах протяженностью 11-12⁰ окружности радужно-роговичного угла. Перед проведением циклодиалиаза, после...
Тип: Изобретение
Номер охранного документа: 0002676967
Дата охранного документа: 11.01.2019
13.01.2019
№219.016.af3b

Способ лечения больных алкогольной полинейропатией

Изобретение относится к медицине, а именно к неврологии, психиатрии, физиотерапии и медицинской реабилитации, и может быть использовано для лечения больных алкогольной полинейропатией. Осуществляют воздействие биполярным импульсным током с трапециевидной огибающей, генерируемым аппаратом...
Тип: Изобретение
Номер охранного документа: 0002676855
Дата охранного документа: 11.01.2019
18.01.2019
№219.016.b0e8

Средство, обладающее антимикробным и антимикотическим действием

Изобретение относится к области медицины, в частности к средствам, обладающим противомикробным и антимикотическим действием. Средство содержит компоненты, извлеченные перколяцией из воздушно-высушенных плодов шиповника и черной смородины 1:1, при следующем соотношении извлеченных компонентов...
Тип: Изобретение
Номер охранного документа: 0002677331
Дата охранного документа: 16.01.2019
01.03.2019
№219.016.c88c

Способ получения наноразмерной фитосомальной системы

Изобретение относится к фармацевтической промышленности, а именно к способу получения фитосом, содержащих кверцетин. Способ получения фитосом, содержащих кверцетин, с размером частиц фитосом 2-12 нм, включает экстракцию 2 г семян сои 50 мл смеси хлороформ-этанол, взятых в соотношении 1:1, под...
Тип: Изобретение
Номер охранного документа: 0002680809
Дата охранного документа: 27.02.2019
29.03.2019
№219.016.ecf7

Способ остеосинтеза при отрыве нижнего полюса надколенника

Изобретение относится к медицине, а именно к травматологии, и предназначено для использования при отрыве нижнего полюса надколенника. На первом этапе производят продольный разрез кожи от основания надколенника до бугристости большеберцовой кости. Осуществляют просверливание 2-3 отверстий в...
Тип: Изобретение
Номер охранного документа: 0002682990
Дата охранного документа: 25.03.2019
08.04.2019
№219.016.fe74

Флуоресцентный оптический днк-сенсор

Изобретение относится к аналитической химии, а именно для изучения различных биомолекул методом люминесцентной визуализации клеток и их компонент. Для этого используют флуоресцентный оптический ДНК сенсор, состоящий из подложки и адсорбированной на ней тонкой пленки комплекса...
Тип: Изобретение
Номер охранного документа: 0002684276
Дата охранного документа: 05.04.2019
Showing 11-18 of 18 items.
19.01.2018
№218.016.0e47

Клапан противопожарный

Изобретение относится к области противопожарной техники, а именно к устройствам систем дымоудаления, установленным, в частности, на дверь пути эвакуации. Клапан противопожарный, содержащий корпус с входным и выходным отверстиями, заслонку на горизонтальной оси, закрепленной на капроновых...
Тип: Изобретение
Номер охранного документа: 0002633276
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.1209

Наполнитель для капсульного ингалятора

Изобретение относится к химико-фармацевтической промышленности и касается капсул с порошковой фармацевтической ингаляционной композицией для лечения аутоиммунных заболеваний. Наполнитель для капсульного ингалятора содержит тимодепрессин в виде тонкодисперсных частиц респирабельных размеров в...
Тип: Изобретение
Номер охранного документа: 0002634258
Дата охранного документа: 24.10.2017
13.02.2018
№218.016.1ec3

Способ профилактики венозной тромбоэмболии у больных раком шейки матки

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для профилактики венозной тромбоэмболии у больных раком шейки матки. Для этого пациенту вводят низкомолекулярных гепаринов (НМГ) в профилактических дозах с учетом факторов риска. Дозу НМГ назначают с первых суток...
Тип: Изобретение
Номер охранного документа: 0002641058
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.1f34

Способ идентификации цветков ромашки аптечной

Изобретение относится к фармакогностическому анализу, а именно к идентификации цветков ромашки аптечной. Способ включает анализ растворов, содержащих спиртовые извлечения цветков ромашки аптечной и цветков трехреберника продырявленного, комплексообразователь и буферный раствор с рН, равным 4-5,...
Тип: Изобретение
Номер охранного документа: 0002641093
Дата охранного документа: 15.01.2018
09.06.2018
№218.016.600e

Плазменный прерыватель тока

Изобретение относится к плазменному прерывателю тока и может быть использовано, например, при создании мощных импульсных источников питания для сильноточных ускорителей заряженных частиц, плазменных диодов. Плазменный прерыватель тока представляет собой систему цилиндрических внутреннего...
Тип: Изобретение
Номер охранного документа: 0002656886
Дата охранного документа: 07.06.2018
13.11.2019
№219.017.e130

Способ повышения точности позиционирования подвижных объектов

Изобретение относится к способам навигации и может быть использовано для повышения точности определения местоположения подвижных объектов, движущихся по локсодромическим траекториям. Способ позиционирования подвижных объектов заключается в том, что до начала движения подвижного объекта (ПО) на...
Тип: Изобретение
Номер охранного документа: 0002705733
Дата охранного документа: 11.11.2019
27.12.2019
№219.017.f2fd

Способ захоронения жидких отходов

Изобретение относится к области охраны окружающей среды от загрязняющих поверхностную гидросферу стоков с городских территорий. Обеспечивает повышение эффективности захоронения жидких отходов (стоков) в геологической депонирующей среде. Сущность изобретения включает использование для...
Тип: Изобретение
Номер охранного документа: 0002710155
Дата охранного документа: 24.12.2019
09.02.2020
№220.018.0111

Способ захоронения жидких стоков в геологической среде

Изобретение относится к области охраны окружающей среды, в частности к захоронению жидких стоков в геологической среде. Первоначально выполняют выделение в геологической среде областей, обладающих развитой системой открытых трещин, имеющих гидродинамическую проницаемость и наличие механизма...
Тип: Изобретение
Номер охранного документа: 0002713796
Дата охранного документа: 07.02.2020
+ добавить свой РИД