×
20.06.2016
217.015.0496

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА СЕРЕБРА И УЛЬТРАДИСПЕРСНЫЙ ПОРОШОК СЕРЕБРА, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия стенок трубопроводов; в химических источниках тока. Способ получения ультрадисперсного порошка серебра включает обработку водного раствора нитрата серебра восстановителем. В качестве восстановителя используют водный раствор диамида тиоугольной кислоты (тиомочевина) и гидроксида аммония, взятых в следующем соотношении: нитрат серебра:диамид тиоугольной кислоты (тиомочевина):гидроксид аммония = 1:5÷10:0,01÷0,8. Полученный ультрадисперсный порошок серебра содержит модифицированные частицы звездообразной формы, имеющие от 32 до 56 пирамидальных и клиновидных лучей длиной 40-50 мкм, со средним размером ядра 5-6 мкм, при этом плотность порошка равна 0,4-0,8 г/см. Технический результат - получение беспримесных металлических частиц серебра, характеризующихся модифицированной структурой морфологии поверхности, простым эффективным способом с использованием безвредных и экологически чистых веществ. 2 н.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия стенок трубопроводов; в химических источниках тока.

Известен метод получения наночастиц серебра, который представляет собой взаимодействие диамингидроксида серебра [Ag(NH3)2]OH и полиоксиэтилена H-(O-CH2-CH2)n-OH, содержащего замещающий амфифильный обратимый сополимер в неполярном растворителе, который отличается тем, что в качестве замещающего амфифильного обратимого сополимера используется гребенчатый сополимер α-олефин-комалеиновый ангидрид кометоксиполиоксиетиленилмалеаната (патент UA 95724, МПК A61K 33/38, A61P 31/04, B01J 13/00, B22B 3/00, C01G 5/00; 2011 год).

К недостаткам известного способа относится использование сложных в получении и дефицитных исходных реагентов, например гребенчатый сополимер α-олефин-комалеиновый ангидрид кометоксиполиоксиетиленилмалеаната. Другим недостатком является сложность работы с исходными реагентами, в частности, при использовании гидроксида диаминсеребра предъявляются высокие требованиях к чистоте помещений.

Наиболее близким к предлагаемому техническому решению является известный способ получения наночастиц серебра, в котором серебро получают восстановлением из раствора его солей в гелевой сульфокатионообменной матрице КУ-2-8. В качестве соли серебра используют 0.01 М раствор AgNO3. В качестве восстановителя нейтрального типа используют разбавленный в 2-3 раза 6% раствор гидразина N2H4 в 2.5% растворе гидроксида натрия NaOH, который приливают порционно к предварительно насыщенной ионами серебра матрице. В качестве восстановителя катионного типа используют 0.1 М раствор хлорида олова(II) SnCl2 в 1.6 М растворе соляной кислоты HCl, который сначала приводят в контакт с ионообменной матрицей в течение 10-15 мин. Затем матрицу в динамическом режиме отмывают от избытков SnCl2 в дистиллированной обескислороженной воде из расчета 1:20 со скоростью 5 м/ч. После этого пропускают через матрицу раствор нитрата серебра AgNO3 в 10 М растворе аммиака из расчета 1:5 со скоростью 2 м/ч. После завершения синтеза матрицу последовательно промывают обескислороженной и обессоленной водой из расчета 1:20 и 6% раствором обескислороженной серной кислоты H2SO4 из расчета 1:5. Изобретение позволяет получить объемно распределенные и агрегативно устойчивые наночастицы серебра, матрично изолированные в сильнокислотном стирол-дивинилбензольном сульфокатионообменнике гелевой природы без его механической деформации. Средний размер частиц серебра составляет 70-85 нм при использовании раствора гидразина и 25-40 нм в случае использования SnCl2 (патент RU 2385293, МПК C01G 5/00, В82В 3/00; 2008 год).

К недостаткам способа относится сложность процесса, обусловленная последовательным смешением большого числа компонентов, в том числе и с разными скоростями добавления их в раствор. Еще один существенный недостаток - получение наночастиц серебра, матрично изолированных в катионнообменнике гелевой природы, что значительно ограничивает области использования конечного продукта либо усложняет процесс получения серебра в виде порошка. Кроме того, известным способом не представляется возможным получить порошок серебра, обладающий улучшенными физико-химическими свойствами, что также значительно сужает области его использования.

Таким образом, перед авторами стояла задача разработать простой способ получения ультрадисперсного порошка серебра, обеспечивающий получение порошка с улучшенными физико-химическими свойствами.

Поставленная задача решена в предлагаемом способе получения ультрадисперсного порошка серебра путем обработки водного раствора нитрата серебра восстановителем, в котором в качестве восстановителя используют водный раствор диамида тиоугольной кислоты (тиомочевина) и гидроксида аммония, взятых в следующем соотношении: нитрат серебра:диамид тиоугольной кислоты (тиомочевина):гидроксид аммония = 1:5÷10:0,01÷0,8.

Авторами также предлагается ультрадисперсный порошок серебра, полученный путем обработки водного раствора нитрата серебра водным раствором диамида тиоугольной кислоты (тиомочевина) и гидроксида аммония, взятых в следующем соотношении: нитрат серебра:диамид тиоугольной кислоты (тиомочевина):гидроксид аммония = 1:5÷10:0,01÷0,8, который содержит модифицированные частицы звездообразной формы, имеющие от 32 до 56 пирамидальных и клиновидных лучей длиной 40-50 мкм, со средним размером ядра 5-6 мкм, при этом плотность порошка равна 0,4-0,8 г/см3.

В настоящее время из патентной и научно-технической литературы не известен способ получения ультрадисперсного порошка серебра путем обработки водного раствора нитрата серебра восстановителем, в котором в качестве восстановителя используют водный раствор диамида тиоугольной кислоты (тиомочевина) и гидроксида аммония, взятых в следующем соотношении нитрат серебра:диамид тиоугольной кислоты (тиомочевина):гидроксид аммония = 1:5÷10:0,01÷0,8. Кроме того, не известны способы получения ультрадисперсного порошка, характеризующегося полученной авторами морфологией, которая обеспечивает улучшение физико-химических свойств порошка.

Предлагаемый способ получения в отличие от известного является одноступенчатым. Матричный раствор, в котором происходит синтез ультрадисперсного порошка серебра, не содержит вредных для организма веществ и обладает нейтральным pH, что позволяет применять полученные частицы в медицине без дополнительной очистки или фильтрации.

Полученный ультрадисперсный порошок серебра является перспективным материалом для использования в различных областях техники, электроники и медицины. Это объясняется тем, что предлагаемый способ позволяет получить модифицированные частицы порошка звездообразной формы, напоминающие 60-лучевой большой звездчатый икосаэдр (фиг. 1а) и имеющие от 32 до 56 пирамидальных и клиновидных лучей длиной от 40 до 50 мкм. Как результат полученной морфологии порошок из таких частиц серебра характеризуется улучшенными физико-химическими свойствами, а именно: пониженной плотностью, пониженной смачиваемостью, большой удельной поверхностью, размещением большого количества атомов на гранях и особенно на ребрах и вершинах частиц. Так, ультрадисперсный порошок звездообразных частиц серебра имеет малую относительную плотность 0.4-0.8 г/см3, которая меньше плотности воды. Вследствие этого, а также вследствие низкой смачиваемости, сверхлегкий синтезированный порошок собирается на поверхности раствора реакционной смеси, что значительно упрощает процесс его отделения от матричного раствора. Также преимуществом ультрадисперсного порошка серебра является низкая смачиваемость его частиц. Низкая смачиваемость ультрадисперсного порошка серебра служит предпосылкой его потенциального использования как супергидрофобного материала с краевым углом смачивания до 150-180°, тогда как краевой угол смачивания обычного серебра составляет от 38 до 63°. В ультрадисперсном порошке серебра благодаря его морфологии полости текстуры поверхности заполнены газом, что и обеспечивает их несмачиваемость любыми жидкостями. Площадь удельной поверхности частиц серебра звездообразной формы составляет от 0.3 м2/г и более. Это в 3-5 раз больше, чем удельная поверхность порошков со средним размером частиц 5-6 мкм.

Поскольку геометрический эффект катализа непосредственно связан с формой частиц, от которой зависит соотношение между числом атомов, расположенных на гранях, ребрах и вершинах малой частицы и имеющих различную координацию, полученные ультрадисперсные частицы являются перспективными материалами для двоякого использования в катализе: (1) катализаторы гетерогенного катализа гидролиза воды для получения водорода, обладающие повышенной каталитической активностью благодаря большому числу атомов, расположенных на гранях, ребрах и вершинах частиц серебра; (2) носители катализатора с большой площадью поверхности. Ультрадисперсные порошки серебра могут использоваться также для изготовления сверхлегких электродов химических источников тока типа серебряно-цинковых аккумуляторов с повышенной электрической емкостью. Благодаря высокой химической стойкости серебра к щелочам и низкой смачиваемости ультрадисперсных порошков они перспективны как материал для покрытий стенок трубопроводов химической промышленности.

Исследования, проведенные авторами, позволили сделать вывод, что получение однофазного беспримесного порошка серебра с фиксированной морфологией частиц может быть осуществлено только при соблюдении предлагаемого соотношения компонентов. Так, если получение порошка осуществляют в присутствии гидроксида аммония, когда его концентрация в соотношении компонентов менее 0,01, диамид тиоугольной кислоты не диссоциирует и образования серебра не происходит. При увеличении концентрации гидроксида аммония в соотношении компонентов более 0,8 или увеличении концентрации диамида тиоугольной кислоты в соотношении компонентов более 10 степень диссоциации диамида тиоугольной кислоты значительно возрастает и основной становится реакция образования сульфида. Если концентрация диамида тиоугольной кислоты в соотношении компонентов становится менее 5, рост лучей частиц серебра прекращается и образуются частицы округлой формы размером менее микрона.

В зависимости от соотношения исходных компонентов в реакционной смеси максимальное расстояние между концами противоположных лучей звездообразных частиц Ag, оцененное по данным сканирующей электронной микроскопии, меняется от 30 до 90 мкм. На фиг. 1a представлена микрофотография синтезированных ультрадисперсных порошков серебра, полученная на сканирующем электронном микроскопе JEOL-JSM LA 6390.

На фиг. 1 показана микроструктура и энерго-дисперсионный анализ звездообразной частицы Ag, полученной по примеру 2: (а) микрофотография частицы Ag с указанием участка сканирования, в которой получен EDX анализ; (б) общий элементный анализ звездообразной частицы Ag; (в) таблица с указанием химических элементов и их количества, присутствующих в области сканирования.

Предложенный способ обеспечивает получение однофазного беспримесного серебра с фиксированной морфологией поверхности. На основе экспериментальных данных энерго-дисперсионного анализа (фиг. 1б) установлено, что содержание серебра Ag в синтезированном высушенном порошке серебра составляет 99.9±0.1 вес. %, что соответствует металлическому серебру Ag.

Предлагаемый способ может быть осуществлен следующим образом. Готовят водные растворы нитрата серебра AgNO3, диамида тиоугольной кислоты (тиомочевина) (NH2)2CS и гидроксида аммония NH4OH, применяемого для повышения pH раствора тиомочевины. Далее к тиомочевине добавляют гидроксид аммония для получения щелочного раствора. Затем микроколичества щелочного раствора вносят в раствор нитрата серебра. Добавление щелочного раствора в раствор нитрата серебра производят в несколько этапов, от 5 до 35 раз. Ультрадисперсные частицы серебра образуются на поверхности раствора нитрата серебра в момент внесения щелочного раствора. При этом соотношение исходных компонентов "нитрат серебра:тиомочевина:гидроксид аммония" равно 1:5÷10:0.01÷0.8. Размер частиц серебра и их количество определяют количеством этапов добавления щелочного раствора в раствор соли серебра. Процесс осуществляют при температуре 20-35°C в течение 5-60 минут. Размеры частиц полученного порошка определяют с помощью сканирующей электронной микроскопии. Химический элементный состав определяют энерго-дисперсионным анализом.

Предлагаемый способ иллюстрируется следующим примерами конкретного исполнения.

Пример 1

Готовят водный раствор 100 мл (0.05 М) нитрата серебра AgNO3, 10 мл (0.25 М) диамида тиоугольной кислоты (NH2)2CS и 5 мл 25% гидроксида аммония NH4OH. Затем к раствору диамида тиоугольной кислоты добавляют 0.005 мл гидроксида аммония. При этом pH раствора диамида тиоугольной кислоты и гидроксида аммония равно 9. Концентрации AgNO3, (NH2)2CS и NH4OH в реакционных смесях, предназначенных для синтеза порошка серебра, составляют 50, 500 и 0.5 mM, что соответствует соотношению компонентов нитрат серебра:тиомочевина:гидроксид аммония = 1:10:0.01. Далее к раствору нитрата серебра по каплям (со скоростью 1 капля в 10 секунд) приливают 10 мл щелочного раствора, после чего на поверхности раствора нитрата серебра визуально наблюдается образование желтых частиц серебра. Синтез ведут при температуре 25°C в течение 60 минут. Максимальное расстояние между концами противоположных лучей звездообразных частиц Ag составляет 90 мкм. Плотность порошка равна 0,4 г/см3.

Пример 2

Готовят водный раствор 80 мл (0.05 М) нитрата серебра AgNO3, 80 мл (0.5 М) диамида тиоугольной кислоты (NH2)2CS и 5 мл 25% гидроксида аммония NH4OH. Затем к раствору диамида тиоугольной кислоты добавляют 0.4 мл гидроксида аммония. При этом pH раствора диамида тиоугольной кислоты и гидроксида аммония равно 10. Концентрации AgNO3, (NH2)2CS и NH4OH в реакционных смесях, предназначенных для синтеза порошка серебра, составляют 0.05, 0.5 и 0.04 М, что соответствует соотношению компонентов "нитрат серебра:тиомочевина:гидроксид аммония" = 1:10:0.8. Далее на диэлектрическую подложку (в конкретном примере в качестве подложки выбрано стекло) наносят тонкий слой щелочного раствора и опускают ее в раствор нитрата серебра. После чего на границе подложка - поверхность раствора нитрата серебра визуально наблюдается образование ярко-желтых частиц серебра. Через 15 секунд подложку достают из раствора нитрата серебра, промывают дистиллированной водой, после чего данный цикл повторяют 14 раз. Синтез ведут при температуре 25°C в течение 30 минут. Максимальное расстояние между концами противоположных лучей звездообразных частиц Ag составляет 70 мкм. Плотность порошка равна 0,8 г/см3.

Таким образом, авторами предлагается простой эффективный способ получения беспримесных металлических частиц серебра, характеризующихся модифицированной структурой морфологии поверхности. Полученные ультрадисперсные порошки пригодны для дальнейшего применения как в медицине, так и в промышленности. В качестве исходных реагентов для проведения синтеза предлагается использовать только безвредные и экологически чистые вещества.


СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА СЕРЕБРА И УЛЬТРАДИСПЕРСНЫЙ ПОРОШОК СЕРЕБРА, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ
Источник поступления информации: Роспатент

Showing 61-70 of 99 items.
04.04.2019
№219.016.fb11

Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором...
Тип: Изобретение
Номер охранного документа: 0002683879
Дата охранного документа: 02.04.2019
16.05.2019
№219.017.5221

Способ извлечения оксида алюминия из отходов глиноземного производства

Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002687470
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53bf

Способ получения биомедицинского материала

Изобретение относится к области медицины, в частности к способу получения биомедицинского материала. Способ получения биомедицинского материала, включающий нанесение на металлическую основу гидроксиапатита и последующую обработку ультразвуковым излучением, при этом основу помещают в 35-45%-ную...
Тип: Изобретение
Номер охранного документа: 0002687737
Дата охранного документа: 16.05.2019
08.06.2019
№219.017.7580

Способ получения порошковой композиции на основе оксикарбидов алюминия

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении упрочняющих и легирующих добавок для алюминиевых сплавов, углеродсодержащих огнеупорных, керамических и абразивных материалов. Сначала готовят исходную смесь гидроксида алюминия и сажи путём осаждения...
Тип: Изобретение
Номер охранного документа: 0002690918
Дата охранного документа: 06.06.2019
08.06.2019
№219.017.75db

Способ получения нанопорошков сложного германата лантана и щелочного металла

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана. Концентрация оксида лантана в полученном растворе...
Тип: Изобретение
Номер охранного документа: 0002690916
Дата охранного документа: 06.06.2019
23.08.2019
№219.017.c29f

Средство для контрастирования при рентгенодиагностике

Изобретение относится к рентгенологии. Предложено средство для контрастирования при рентгенодиагностике, содержащее (масс. %): наночастицы танталата по крайней мере одного элемента, выбранного из группы, включающей иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий,...
Тип: Изобретение
Номер охранного документа: 0002697847
Дата охранного документа: 21.08.2019
09.10.2019
№219.017.d3a2

Способ получения формиата меди (ii)

Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для...
Тип: Изобретение
Номер охранного документа: 0002702227
Дата охранного документа: 07.10.2019
04.11.2019
№219.017.de29

Способ получения сложного литиевого танталата лантана и кальция

Изобретение относится к получению порошка сложного литиевого танталата лантана и кальция состава LiCaLaTaO, используемого в качестве одного из основных компонентов литий-ионной батареи. Способ включает добавление пентоксида тантала к кислоте с последующим получением геля и добавлением нитратов...
Тип: Изобретение
Номер охранного документа: 0002704990
Дата охранного документа: 01.11.2019
27.11.2019
№219.017.e6eb

Способ переработки бокситов

Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита. Последующее автоклавное выщелачивание осуществляют при соотношении жидкое...
Тип: Изобретение
Номер охранного документа: 0002707223
Дата охранного документа: 25.11.2019
01.12.2019
№219.017.e91f

Бессопловой ракетный двигатель твердого топлива

Изобретение относится к ракетной технике, в частности к ракетам с бессопловом двигателем твердого топлива. Бессопловой ракетный двигатель твердого топлива содержит корпус, имеющий переднее днище, цилиндрическую часть и задний торец, заряд твердого топлива, торец которого выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002707648
Дата охранного документа: 28.11.2019
Showing 41-41 of 41 items.
16.06.2023
№223.018.7aab

Способ получения монокристалла оксида ниобия

Изобретение относится к области технологии материалов, которые могут применяться в электронике в качестве контактов для конденсаторов. Cпособ получения монокристалла оксида ниобия включает бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала...
Тип: Изобретение
Номер охранного документа: 0002734936
Дата охранного документа: 26.10.2020
+ добавить свой РИД