×
20.06.2016
217.015.0428

Результат интеллектуальной деятельности: НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники. Технический результат - уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа. Для этого в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. 4 ил.
Основные результаты: Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Изобретение относится к технике СВЧ и может быть использовано в устройствах измерительной техники.

Известен фотонный кристалл, реализованный в виде последовательно соединенных отрезков микрополосковой линии передачи с периодически изменяющейся шириной полоски (Фотонные структуры и их использование для измерения параметров материалов. Д.А.Усанов, А.В.Скрипаль, А.В.Абрамов, А.С.Боголюбов, М.Ю.Куликов. Известия вузов. Электроника 2008, №5, с.25-32).

Недостатком данного фотонного кристалла является большой продольный размер, а также ограниченность области применения только малыми и средними уровнями мощности СВЧ-колебаний.

Эти недостатки частично устранены в фотонном кристалле в виде отрезка волновода, содержащего семислойную структуру, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из фторопласта толщиной 44 мм (Резонансные особенности в разрешенных и запрещенных зонах сверхвысокочастотного фотонного кристалла с нарушением периодичности. Д. А. Усанов, С. А. Никитов, А. В. Скрипаль, Д. В. Пономарев. Радиотехника и электроника 2013, т.58, №11, с.1071-1076).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 4 раза длину волны СВЧ-излучения.

Наиболее близким по габаритным размерам к предлагаемому является фотонный кристалл в виде отрезка волновода, содержащего структуру из 11 слоев, представляющую собой периодически чередующиеся нечетные слои, выполненные из поликора толщиной 1 мм, и четные слои, выполненные из пенопласта толщиной 12 мм (см. патент на изобретение RU №2407114, МПК Н01Р 1/00).

Недостатком данного фотонного кристалла является большой продольный размер, превышающий более чем в 2 раза длину волны СВЧ-излучения.

Задачей настоящего изобретения является создание СВЧ фотонного кристалла с продольным размером, меньшим длины волны основного типа.

Техническим результатом является уменьшение продольного размера фотонного кристалла вдоль направления распространения электромагнитной волны до величины, меньшей длины волны основного типа.

Указанный технический результат достигается тем, что низкоразмерный волноводный фотонный кристалл выполнен в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, согласно решению четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.

Предлагаемое устройство поясняется чертежами: на фиг.1 представлена модель фотонного кристалла, на фиг.2 - расчетные частотные зависимости коэффициента пропускания (непрерывная кривая) и отражения (пунктирная кривая) низкоразмерного фотонного кристалла с диэлектрическими слоями из фторопласта, на фиг.3 - расчетная и экспериментальная частотные зависимости коэффициента отражения низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола, на фиг.4 - расчетная и экспериментальная частотные зависимости коэффициента пропускания низкоразмерного фотонного кристалла с диэлектрическими слоями из пенополистирола. Позициями на фиг.1 обозначены:1 - отрезок прямоугольного волновода, 2 - верхняя стенка волновода, 3 - диэлектрические слои, 4 - нижняя стенка волновода, 5 - тонкие металлические пластины, S - величина зазора, h - толщина слоя диэлектрика.

Сущность изобретения заключается в том, что в качестве элементов волноводного СВЧ фотонного кристалла, образующих периодическую последовательность, используют диэлектрические слои, полностью заполняющие волновод по перечному сечению, и тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Оригинальность предлагаемого решения заключается в том, что толщина всех слоев периодической структуры предлагаемого волноводного фотонного кристалла существенно меньше длины волны основного типа в волноводе, при этом в качестве четных слоев используются диэлектрические слои, полностью заполняющие поперечное сечение волновода, а в качестве нечетных элементов - тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода.

Низкоразмерный волноводный фотонный кристалл представляет собой отрезок волновода, который содержит элементы, периодически чередующиеся в направлении распространения электромагнитного излучения.

Четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода. Толщина диэлектрических слоев h определяется по формуле:

,

где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла, ε - диэлектрическая проницаемость диэлектрика, k - численный коэффициент.

Нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом расположены у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, где - длина волны основного типа в волноводе, соответствующая середине «запрещенной» зоны фотонного кристалла.

Теоретическое обоснование достижения положительного эффекта.

Возможность значительного уменьшения размеров предложенного СВЧ фотонного кристалла по сравнению с известными волноводными СВЧ фотонными кристаллами обосновывается предложенной физической моделью, состоящей в том, что взаимодействие в предложенном устройстве осуществляется не по основному типу волны, а по высшим типам, источником которых является зазор между металлической пластиной и широкой стенкой волновода. В последующем элементе зазор между металлической пластиной и широкой стенкой волновода расположен у противоположной стенки волновода, так что напротив возбуждающихся на зазоре высших типов волн находится металлическая отражающая стенка. В результате этого создаются условия для существования резонанса на высших типах волн. Длины волн высших типов существенно меньше длины волны основного типа. Следствием этого является уменьшенный общий размер фотонного кристалла.

Справедливость предложенной модели обоснована результатами численного моделирования и проведенными измерениями. Численное моделирование осуществлялось с использованием метода конечных элементов в САПР Ansoft HFSS.

Исходя из минимального количества тонких металлических пластин равного 5, необходимых для получения в спектре волноводного ФК «разрешенной» и «запрещенной» зон, можно определить максимальную толщину hmax диэлектрических слоев волноводной фотонной структуры, продольный размер которой не превышает длину волны основного типа в волноводе λ, по формуле

hmax=λ /(m1-1),

где λ - длина волны основного типа в волноводе, m1 - количество тонких металлических пластин в структуре.

В результате численного моделирования было выявлено, что при соблюдении условий h ≤ hmax и ε ≤ 9,8, для получения в трехсантиметровом диапазоне длин волн в спектре пропускания предлагаемого волноводного фотонного кристалла «разрешенных» зон с потерями в интервале от 6% до 50% от глубины «запрещенной» зоны коэффициент k должен находиться в интервале значений от 3 до 9, а ширина зазора S - в интервале от 0,0125λ до 0,0625λ.

Пример практической реализации устройства.

Реализовывался фотонный кристалл 3-сантиметрового диапазона длин волн. Периодическая структура фотонного кристалла состояла из 9 слоев и размещалась в отрезке волновода сечением 23×10 мм. Четные слои структуры были выполнены из диэлектрика, полностью заполняющего поперечное сечение волновода. В качестве материала диэлектрика использовался пенополистирол (ε=1,02). Толщина диэлектрических слоев h составляла 3 мм. В качестве нечетных слоев фотонного кристалла использовались тонкие металлические пластины, частично перекрывающие сечение волновода и образующие зазор между пластиной и широкой стенкой волновода по всей ее длине. Зазоры между нечетными металлическими пластинами и волноводом располагались у верхней широкой стенки волновода, а зазоры между четными металлическими пластинами и волноводом - у нижней широкой стенки волновода. Металлические пластины изготовлены из алюминия. Толщина каждой пластины составляла 15 мкм. Минимальная величина толщины металлической пластины должна превышать толщину скин-слоя в выбранном диапазоне частот, а максимальная величина толщины металлической пластины должна быть меньше 0,001λ. Величина каждого из зазоров между металлическими пластинами и широкой стенкой волновода составляла 1 мм. Продольный размер созданного волноводного фотонного кристалла составил 12,25 мм.

Частотные зависимости коэффициентов отражения и пропускания полученной фотонной структуры измерялись в трехсантиметровом диапазоне длин волн с помощью векторного анализатора цепей AgilentPNA-LN5230A. На фиг. 2, 3 представлены расчетные и экспериментальные частотные зависимости коэффициентов отражения и пропускания созданного фотонного кристалла. Таким образом, длина волны основного типа, распространяющейся в полученном фотонном кристалле, более чем в 2 раза превысила его продольный размер.

Низкоразмерный волноводный фотонный кристалл, выполненный в виде волновода, содержащего элементы, периодически чередующиеся в направлении распространения электромагнитного излучения, отличающийся тем, что четные элементы фотонного кристалла выполнены в виде диэлектрических слоев, полностью заполняющих поперечное сечение волновода, а нечетные элементы фотонного кристалла выполнены в виде тонких металлических пластин, частично перекрывающих сечение волновода и образующих зазор между пластиной и широкой стенкой волновода по всей ее длине, при этом зазоры между нечетными металлическими пластинами и волноводом расположены у одной из широких стенок волновода, а зазоры между четными металлическими пластинами и волноводом - у противоположной широкой стенки волновода, ширина всех зазоров одинакова и находится в интервале от 0,0125λ до 0,0625λ, толщина диэлектрических слоев h находится в интервале от λ/(3) до λ/(9), где λ - длина волны основного типа в волноводе, соответствующая середине запрещенной зоны фотонного кристалла, ε - относительная диэлектрическая проницаемость диэлектрических слоев.
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
НИЗКОРАЗМЕРНЫЙ СВЧ ФОТОННЫЙ КРИСТАЛЛ
Источник поступления информации: Роспатент

Showing 71-77 of 77 items.
25.08.2017
№217.015.cdc8

Способ определения толщины, электропроводности, эффективной массы, коэффициентов рассеяния носителей заряда, концентрации и энергии активации легирующей примеси полупроводникового слоя

Изобретение относится к измерительной технике, может быть использовано для определения электрофизических параметров слоя полупроводника на поверхности диэлектрика и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002619802
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.d7f7

Способ измерения параметров полупроводниковых структур

Использование: для одновременного определения толщины полуизолирующей подложки, толщины и удельной электропроводности нанесенного на нее сильнолегированного слоя и подвижности свободных носителей заряда в этом слое. Сущность изобретения заключается в том, что способ определения параметров...
Тип: Изобретение
Номер охранного документа: 0002622600
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d9f3

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого...
Тип: Изобретение
Номер охранного документа: 0002623666
Дата охранного документа: 28.06.2017
20.11.2017
№217.015.ef60

Умножитель частоты высокой кратности

Изобретение относится к радиоэлектронике, в частности к СВЧ-умножителям частоты высокой кратности, применяемым для получения сигнала высокой частоты с низким уровнем фазового шума в выходном сигнале. Технический результат заключается в расширении арсенала средств. Умножитель частоты включает...
Тип: Изобретение
Номер охранного документа: 0002628993
Дата охранного документа: 23.08.2017
19.01.2018
№218.016.00bf

Способ определения расстояния до объекта

Изобретение относится к области контрольно–измерительной техники. Способ измерения расстояния до объекта заключается в том, что объект освещают лазерным излучением, отраженное от объекта излучение, интерферирующее в лазере, преобразуют в электрический автодинный сигнал. Лазерное излучение...
Тип: Изобретение
Номер охранного документа: 0002629651
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
10.05.2018
№218.016.40ce

Способ повышения октанового числа

Изобретение относится к способу получения увеличения октанового числа бензина на 2,5-3 пункта, заключающемуся в пропускании бензина через пористую основу. Способ характеризуется тем, что данная основа содержит в себе адсорбирующий материал из многослойных углеродных нанотрубок, при этом для...
Тип: Изобретение
Номер охранного документа: 0002648985
Дата охранного документа: 29.03.2018
Showing 91-100 of 117 items.
13.02.2019
№219.016.b9ca

Способ определения параметров магнитной жидкости

Изобретение относится к измерительной технике и может найти применение в различных отраслях промышленности. Cпособ определения параметров магнитной жидкости заключается в воздействии СВЧ-излучения и магнитного поля на магнитную жидкость, помещённую в волновод, измерении коэффициента отражения...
Тип: Изобретение
Номер охранного документа: 0002679457
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ce

Неразрушающий способ измерения подвижности носителей заряда в полупроводниковой структуре

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов. Изобретение обеспечивает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002679463
Дата охранного документа: 11.02.2019
01.03.2019
№219.016.d0bf

Сканирующий зондовый микроскоп

Изобретение относится к электронно-измерительной технике и нанотехнологиям и предназначено в том числе для использования со сканирующим зондовым микроскопом (СЗМ) при исследовании микро- и нанорельефа поверхности. СЗМ содержит виброизоляционное основание, средство привода точного...
Тип: Изобретение
Номер охранного документа: 0002461839
Дата охранного документа: 20.09.2012
20.03.2019
№219.016.e557

Способ оценки потенциальной опасности коллапсоидных осложнений при резких физических нагрузках

Изобретение относится к медицине, а именно к физиологии и клинической медицине. Регистрируют форму и параметры пульсовой волны для нескольких кардиоциклов, по которым определяют тип нервной регуляции сердечно-сосудистой системы испытуемого. При сочетании ваготонического типа нервной регуляции с...
Тип: Изобретение
Номер охранного документа: 0002397695
Дата охранного документа: 27.08.2010
29.03.2019
№219.016.f57d

Модулятор свч на поверхностных магнитостатических волнах

Изобретение направлено на обеспечение управления уровнем режекции СВЧ-сигнала в полосе частот без необходимости обеспечения протекания управляющего постоянного тока по металлической пленке. Технический результат - возможность управления уровнем режекции СВЧ-сигнала в полосе частот без...
Тип: Изобретение
Номер охранного документа: 0002454788
Дата охранного документа: 27.06.2012
01.05.2019
№219.017.482a

Управляемый ответвитель свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике. Ответвитель СВЧ сигнала на магнитостатических волнах содержит подложку из галлий-гадолиниевого граната с размещенными на ней с зазором двумя микроволноводами в форме параллельных удлиненных полосок равной ширины из пленок железо-иттриевого граната (ЖИГ)....
Тип: Изобретение
Номер охранного документа: 0002686584
Дата охранного документа: 29.04.2019
18.05.2019
№219.017.567b

Способ получения антоцианового красителя из растительного сырья

Изобретение относится к пищевой промышленности и может быть использовано для получения пищевого красителя из растительного сырья. Способ предусматривает измельчение исходного сырья - антоциановой гибридной формы культивируемого однолетнего растения кукурузы обыкновенной Zea mays L.,...
Тип: Изобретение
Номер охранного документа: 0002399639
Дата охранного документа: 20.09.2010
18.05.2019
№219.017.5a7d

Способ диагностики функционального состояния периферических сосудов

Изобретение относится к медицине, а именно к методам функциональной диагностики. Для диагностики функционального состояния периферических сосудов проводят окклюзионный тест. С помощью тепловизора непрерывно измеряют среднюю температуру в области дистальных фаланг пальцев кисти и/или стопы в...
Тип: Изобретение
Номер охранного документа: 0002405416
Дата охранного документа: 10.12.2010
29.05.2019
№219.017.66fb

Способ оценки потенциальной опасности коллапсоидных осложнений при резких физических нагрузках

Изобретение относится к медицине, а именно к кардиологии. Измеряют электрокардиограмму испытуемого и регистрируют кардиоинтервалы, по которым определяют тип нервной регуляции сердечно-сосудистой системы испытуемого. При этом дополнительно определяют тонус сосудов путем синхронной с...
Тип: Изобретение
Номер охранного документа: 0002306851
Дата охранного документа: 27.09.2007
01.06.2019
№219.017.7288

Логическое устройство на основе фазовращателя свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве фазовращателя. Устройство содержит, размещенный на подложке микроволновод из пленки железоиттриевого граната (ЖИГ), имеющий раздвоенную среднюю часть, размещенные...
Тип: Изобретение
Номер охранного документа: 0002690020
Дата охранного документа: 30.05.2019
+ добавить свой РИД