×
20.06.2016
217.015.0338

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭНЕРГИИ МОЩНЫХ НАНО- И ПИКОСЕКУНДНЫХ ЛАЗЕРНЫХ ИМПУЛЬСОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконный коллектор, ослабитель лазерного излучения, фотодиод, измерительно-вычислительный блок. В качестве рассеивающей среды используется диффузный рассеиватель, выполненный в виде цилиндрической шайбы из молочного стекла. На внешней поверхности шайбы равномерно по окружности закреплены с возможностью регулировки расстояния до поверхности рассеивателя разветвленные концы световолоконного коллектора. Коллектор обеспечивает передачу оптического сигнала через ослабитель на фотодиод. Выходной конец коллектора закреплен с возможностью регулировки расстояния до ослабителя. Технический результат заключается в увеличении диапазона и повышении точности измерений. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и технической физики, в частности к созданию устройств для измерения энергии мощных импульсов лазерного излучения.

Из уровня техники известны устройства для измерения энергии мощных лазерных импульсов, использующие пироэлектрические первичные измерительные преобразователи, изготавливаемые фирмой «Ophir Optronics Solutions Ltd» [1]. Устройства типа PES0-DIF-ER-C и PE100BF-DIF-C позволяют производить измерение энергии импульсного лазерного пучка с энергией до 40 Дж с длительностью импульсов от 0,002 мс до 20 мс с частотой следования до от 25 Гц до 10 кГц. При этом плотность мощности измеряемого лазерного излучения в одном импульсе при диаметре пучка ≈33 мм составляет ≈2,5·106 Вт/см2, что характерно для импульсов микро- и миллисекундного диапазона длительностей.

Однако для решения задач измерения энергии мощных лазерных импульсов в нано- и пикосекундном диапазонах длительностей упомянутые устройства по своей конструкции не приспособлены к высоким плотностям мощности ≈(1-5)·109 Вт/см2 из-за низкого значения предельной плотности оптической мощности пироэлектрических приемников, превышение которой ведет к их повреждению или к необратимому изменению метрологических характеристик.

Задача расширения диапазона длительностей мощных лазерных импульсов при измерении энергии может эффективно решаться посредством применения устройств, основанных на рассеянии измеряемого излучения.

Из уровня техники известно устройство для измерения мощности лазерного излучения, основанное на диффузном рассеянии [2]. Устройство предназначено для измерения мощности малоинтенсивного непрерывного излучения терапевтических лазерных установок с волоконно-оптическими зондами, использующими наконечники различной формы. Применяемый на выходе зондов рассеиватель позволяет сформировать излучение, близкое по интенсивности для всех используемых типов наконечников при равной оптической мощности, вводимой в волоконно-оптический зонд без дополнительной перенастройки устройства. Фактически, для разных типов наконечников пространственное распределение интенсивности на выходе рассеивателя выравнивается. Однако данное устройство не предназначено для измерения энергии мощных коротких (нано- и пикосекундных) импульсов, так как не рассчитано на работу с большими плотностями мощности излучения, приводящими к выходу из строя применяемых оптических элементов устройства из-за недостаточно высокой их лучевой стойкости к уровням плотности ≈(1-5)·109 Вт/см2. Кроме того, тракт измерения и обработки электрического сигнала упомянутого устройства не содержит элементов, позволяющих измерять энергию мощных лазерных импульсов или импульсной последовательности.

Наиболее близким аналогом предлагаемого устройства является устройство, работающее на основе бесконтактного способа измерения мощности лазерного излучения, основанного на измерении рассеяния вторичного свечения от частиц аэрозоля из тугоплавкого материала при воздействии лазерного излучения с интенсивностью более 103 Βт/см2 [3]. Погрешность измерения лазерных характеристик предлагаемым способом определяется точностью измерения концентрации светящихся частиц. Эта концентрация, в свою очередь, может быть измерена с высокой точностью, если поток аэрозоля сформирован в виде плоского слоя. Однако создание широкого однородного слоя является достаточно сложной технической задачей, о чем непосредственно в документе [3] упоминают авторы, причем в возможном решении этой задачи не рассматривается метрологический аспект, являющийся существенным при создании как новых способов измерения, так и соответствующих этим способам устройств.

Техническая задача, решаемая заявляемым изобретением, состоит в создании высокоточного устройства для измерения энергии мощных нано- и пикосекундных лазерных импульсов с плотностью мощности ≈(1-5)·109 Вт/см2, в котором результат измерения не зависит от вида пространственного распределения интенсивности лазерного пучка.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в увеличении диапазона плотности мощности при измерении энергии лазерных импульсов, повышении точности измерения энергии вне зависимости от вида пространственного распределения интенсивности лазерного пучка.

Указанный технический результат достигается за счет того, что устройство содержит калиброванный нейтральный ослабитель лазерного излучения с высокими характеристиками стабильности ослабления мощных импульсов, диффузный рассеиватель со световолоконным коллектором, согласованным по уровню оптического сигнала с фотодиодом, на входе которого установлен нейтральный ослабитель с возможностью регулировки расстояния положения конца световолоконного коллектора, подводящего рассеянное излучение к поверхности ослабителя, что позволяет изменять интенсивность излучения, поступающего на фотодиод, так как интенсивность изменяется обратно пропорционально квадрату упомянутого расстояния, а разветвленные концы световолоконного коллектора, на которые поступает рассеянное излучение от диффузного рассеивателя, установлены с возможностью регулировки расстояния от них до внешней цилиндрической поверхности диффузного рассеивателя, что позволяет осуществлять выравнивание зонной характеристики устройства, т.е. добиться того, чтобы интенсивность излучения, попадающего на разветвленные концы световолоконного коллектора, будет слабо зависеть от положения входящего в устройство лазерного пучка относительно диффузного рассеивателя, что, в конечном счете, влечет за собой повышение точности измерения энергии.

В состав заявляемого устройства для измерения энергии входит измерительно-вычислительный блок, содержащий интегрирующее устройство, выполняющее функцию преобразования импульса тока с выхода фотодиода в импульс напряжения, амплитуда которого пропорциональна энергии излучения на входе фотодиода, усилитель напряжения с переменным коэффициентом усиления, определяемым величиной значения энергии лазерного излучения, для создания необходимого уровня электрического сигнала для работы пикового детектора, пиковый детектор для запоминания и хранения информации о значении пиковой амплитуды импульса, аналого-цифровой преобразователь для преобразования электрических сигналов пикового детектора в цифровую информацию, микропроцессор, в котором посредством специально разработанного программного обеспечения, путем программной аппроксимации характеристик преобразования фотодиода методом наименьших квадратов снижается нелинейность упомянутой характеристики до уровня 0,5-0,7% в диапазоне двух-трех десятичных порядков изменения энергии, индикатор для визуализации результатов измерений.

Независимо от вида пространственного распределения интенсивности лазерного пучка, поступающего на диффузный рассеиватель, структура распределения на его выходе выравнивается и приближается к равномерной, что обеспечивает требуемую точность измерения энергии вне зависимости от вида пространственного распределения интенсивности.

Световолоконный коллектор обеспечивает передачу рассеянного оптического сигнала на фотодиод, что уменьшает влияние электромагнитной помехи во время импульса за счет конструктивного вынесения фотодиода из тракта прямого лазерного излучения, что повышает точность измерения энергии.

Описанная конструкция оптической схемы устройства обеспечивает требуемое ослабление энергии лазерного пучка до уровня, необходимого для измерения его фотодиодом. Возможность регулировки с помощью винтов расстояния от внешней цилиндрической поверхности диффузного рассеивателя до разветвленных концов световолоконного коллектора позволяет уменьшать влияние зонной характеристики устройства на результат измерения энергии, что повышает точность измерения энергии.

Наличие нейтрального ослабителя на входе фотодиода и возможность регулировки с помощью винта расстояния от конца световолоконного коллектора, противоположного к разветвленным концам, до поверхности ослабителя, позволяет согласовать уровень отбираемого рассеянного излучения с диапазоном линейности фотодиода, что также повышает точность измерения энергии.

Схема заявляемого устройства для измерения энергии лазерных импульсов в предпочтительном варианте его осуществления представлена на Фиг. 1. Устройство представляет собой измерительный преобразователь 1, в состав которого входит нейтральный ослабитель 2 толщиной около 4 мм, диффузный рассеиватель 3, выполненный в виде цилиндрической шайбы из молочного стекла, например, марки МС-23, установленной во фланец, причем на внешней цилиндрической поверхности рассеивателя равномерно по окружности установлены и закреплены посредством винтов 4 разветвленные концы световолоконного коллектора 5, противоположный конец которого закреплен в оправу с помощью винта 6, где соосно с концом 5 размещен нейтральный ослабитель излучения 7 и фотодиод 8, измерительно-вычислительный блок 15, содержащий интегрирующее устройство 9, усилитель 10, пиковый детектор 11, аналого-цифровой преобразователь (АЦП) 12, микропроцессор 13 и индикатор 14. В микропроцессоре осуществляется программная аппроксимация характеристики фотодиода методом наименьших квадратов посредством использования специально разработанного программного обеспечения.

На Фиг. 2 приведена характеристика стабильности коэффициента ослабления ослабителя, выполненного из стекла НС-2и используемого для измерения энергии импульсов с плотностью мощности ≈6·109 Вт/см2 и длительностью импульса ≈6·10-9 с в серии из пяти измерений. Представленная характеристика подтверждает возможность обеспечения стабильности коэффициента пропускания подобранного стекла при упомянутом уровне плотности мощности.

Устройство работает следующим образом. Излучение лазера поступает на нейтральный ослабитель 2 и на диффузный рассеиватель 3. Рассеянное излучение поступает на разветвленные концы световолоконного коллектора 5, далее - на нейтральный ослабитель 7 и на фотодиод 8. Поступающее на фотодиод 8 импульсное лазерное излучение преобразуется в импульс тока. Импульс тока фотодиода поступает на интегрирующее устройство 9, преобразующее его в импульс напряжения, амплитуда которого пропорциональна энергии излучения на входе фотодиода. Импульс напряжения с выхода интегрирующего устройства через усилитель 10 поступает на вход пикового детектора 11, который «запоминает» и «хранит» информацию о значении пиковой амплитуды этого импульса в течение времени (~ 100 мкс), необходимого для его измерения и регистрации.

Благодаря этому устройство позволяет проводить измерение энергии как одиночного импульса, так и последовательности лазерных импульсов с частотой следования до 103-104 Гц.

С выхода пикового детектора сигнал поступает на АЦП 12, где преобразуется в цифровую информацию, оцифрованный сигнал от которого поступает на микропроцессор 13. Микропроцессор считывает данные во внутреннюю память для последующей обработки и формирования сигналов для визуализации на индикаторе 14.

Литература:

1. Сайт www.ophiropt.com/laser-measurement. Каталог измерителей мощности и энергии «OPHIR».

2. В.Б. Лощенков, К.Г. Линьков, Н.Н. Брысин, Т.А. Савельева. Патент RU №2381461 С1, кл. G01J 1/04, 2008.

3. Н.Н. Белов, А.А. Негин. Авторское свидетельство SU №701221 А, кл. G01J 1/58, 1986.


УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭНЕРГИИ МОЩНЫХ НАНО- И ПИКОСЕКУНДНЫХ ЛАЗЕРНЫХ ИМПУЛЬСОВ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭНЕРГИИ МОЩНЫХ НАНО- И ПИКОСЕКУНДНЫХ ЛАЗЕРНЫХ ИМПУЛЬСОВ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭНЕРГИИ МОЩНЫХ НАНО- И ПИКОСЕКУНДНЫХ ЛАЗЕРНЫХ ИМПУЛЬСОВ
Источник поступления информации: Роспатент

Showing 21-29 of 29 items.
20.01.2018
№218.016.12d0

Вторичный эталон единицы энергии лазерного излучения для калибровки и поверки лазерных джоульметров в расширенном спектральном диапазоне

Изобретение относится к области измерительной техники и касается вторичного эталона единицы энергии лазерного излучения. Эталон включает в себя источник лазерного излучения, делительную пластину, контрольный измерительный преобразователь энергии лазерного излучения, ослабитель энергии лазерного...
Тип: Изобретение
Номер охранного документа: 0002634370
Дата охранного документа: 26.10.2017
04.04.2018
№218.016.3182

Установка для вытяжения оптоволокна

Изобретение относится к установке для вытяжения оптоволокна. Техническим результатом является уменьшение количества брака. Установка для вытяжения оптоволокна, содержащая общее основание, на котором установлены две подвижные опоры с зажимами для фиксации вытягиваемого участка оптоволокна,...
Тип: Изобретение
Номер охранного документа: 0002645040
Дата охранного документа: 15.02.2018
25.06.2018
№218.016.661c

Эталонная установка единицы мощности лазерного излучения и световод для нее

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано в составе эталонной техники для метрологического обеспечения высокоточной поверки средств измерений средней мощности коллимированного лазерного излучения. Световод выполнен в...
Тип: Изобретение
Номер охранного документа: 0002658512
Дата охранного документа: 21.06.2018
09.08.2018
№218.016.7a74

Электронно-оптический преобразователь

Изобретение относится к электронной технике, а именно к электронно-оптическим преобразователям (ЭОП) с люминесцентным экраном, и может быть использовано для регистрации и временного анализа быстропротекающих процессов. Электронно-оптический преобразователь содержит фотокатод, цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002663498
Дата охранного документа: 07.08.2018
11.03.2019
№219.016.d88a

Способ оценки размеров наночастиц в жидких средах при анализе их элементного состава

Предложен способ для оценки размеров наночастиц в жидких средах при анализе их элементного состава на атомно-абсорбционном спектрометре с электротермическим атомизатором, способ, при котором жидкую пробу, содержащую коллоидные наночастицы, дозируют в графитовую печь электротермического...
Тип: Изобретение
Номер охранного документа: 0002395796
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7a66

Устройство для поверки пульсовых оксиметров

Изобретение относится к медицинской технике, а именно к устройствам для поверки пульсовых оксиметров. Устройство содержит датчик, функционально имитирующий палец, вставляемый в приемное устройство пульсового оксиметра. Датчик включает светодиод, установленные в двух каналах фотодиоды, усилители...
Тип: Изобретение
Номер охранного документа: 0002386388
Дата охранного документа: 20.04.2010
09.06.2019
№219.017.7e43

Устройство для определения спектральной излучательной способности нагретых объектов

Изобретение относится к измерительной технике. В устройстве количество спектральных полос N выбирается большим 6, в состав устройства введены N независимых приемников излучения, N аналого-цифровых преобразователей (АЦП), N блоков памяти, N делительных устройств, синхронизатор, а также канал для...
Тип: Изобретение
Номер охранного документа: 0002403539
Дата охранного документа: 10.11.2010
09.06.2019
№219.017.7ed9

Тепловой трап-детектор

Изобретение относится к измерительной технике. Техническим результатом изобретения является существенное расширение спектрального и динамического диапазонов работы такого устройства. В устройстве измерения мощности лазерного излучения используются идентичные тепловые приемники, расположенные по...
Тип: Изобретение
Номер охранного документа: 0002434207
Дата охранного документа: 20.11.2011
09.06.2019
№219.017.7fc4

Устройство для измерения параметров электромагнитного импульса со сверхкороткой длительностью фронта

Изобретение относится к импульсной технике и используется в задачах измерения параметров электромагнитных импульсов (ЭМИ). Устройство для измерения параметров ЭМИ с длительностью фронта в сотни пикосекунд содержит первичный измерительный преобразователь в виде отрезка двухпроводной...
Тип: Изобретение
Номер охранного документа: 0002468375
Дата охранного документа: 27.11.2012
Showing 21-25 of 25 items.
20.01.2018
№218.016.12d0

Вторичный эталон единицы энергии лазерного излучения для калибровки и поверки лазерных джоульметров в расширенном спектральном диапазоне

Изобретение относится к области измерительной техники и касается вторичного эталона единицы энергии лазерного излучения. Эталон включает в себя источник лазерного излучения, делительную пластину, контрольный измерительный преобразователь энергии лазерного излучения, ослабитель энергии лазерного...
Тип: Изобретение
Номер охранного документа: 0002634370
Дата охранного документа: 26.10.2017
04.04.2018
№218.016.3182

Установка для вытяжения оптоволокна

Изобретение относится к установке для вытяжения оптоволокна. Техническим результатом является уменьшение количества брака. Установка для вытяжения оптоволокна, содержащая общее основание, на котором установлены две подвижные опоры с зажимами для фиксации вытягиваемого участка оптоволокна,...
Тип: Изобретение
Номер охранного документа: 0002645040
Дата охранного документа: 15.02.2018
29.06.2018
№218.016.68ae

Установка для калибровки/поверки и способ калибровки средств измерений ширины лазерного пучка

Изобретение относится к области оптических измерений. Установка для калибровки/поверки средств измерений ширины лазерного пучка содержит закрепленные на едином основании источник лазерного излучения, делительную пластину, механизм изменения ширины лазерного пучка и выполненное с возможностью...
Тип: Изобретение
Номер охранного документа: 0002659183
Дата охранного документа: 28.06.2018
11.04.2019
№219.017.0b1c

Установка для калибровки/поверки и способ калибровки средств измерений угла расходимости лазерного пучка

Изобретение относится к области оптических измерений, а именно к высокоточным фотометрическим установкам для калибровки/поверки средств измерений угла расходимости лазерного пучка. Заявленная установка для калибровки/поверки средств измерений расходимости лазерного пучка содержит закрепленные...
Тип: Изобретение
Номер охранного документа: 0002684435
Дата охранного документа: 09.04.2019
14.05.2019
№219.017.518f

Способ калибровки/поверки средств измерения мощности лазерного излучения

Изобретение относится к фотометрии, а именно к способам калибровки/поверки средств измерений большой мощности лазерного излучения, и может быть использовано в метрологических целях. Способ калибровки/поверки средств измерений мощности лазерного излучения заключается в том, что исходный пучок...
Тип: Изобретение
Номер охранного документа: 0002687303
Дата охранного документа: 13.05.2019
+ добавить свой РИД