×
20.06.2016
217.015.02e0

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ТВЕРДОСПЛАВНЫХ ПЛАСТИН РЕЖУЩЕГО ИНСТРУМЕНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к электроимпульсной обработке твердосплавных пластин режущего инструмента, и может быть использовано в металлообрабатывающей, машиностроительной и инструментальной отраслях промышленности. В способе обработки твердосплавных пластин режущего инструмента, включающем воздействие на пластины импульсным электрическим током, воздействие осуществляют импульсами электрического тока с частотой 10-100 кГц с энергией 1-100 кДж и длительностью воздействия 10-10 с. Повышается износостойкость инструмента и расширяются технологические возможности осуществления способа. 2 ил., 2 табл., 2 пр.
Основные результаты: Способ обработки твердосплавных пластин режущего инструмента, включающий воздействие на пластины импульсным электрическим током, отличающийся тем, что воздействие осуществляют импульсами электрического тока с частотой 10-100 кГц с энергией 1-100 кДж и длительностью воздействия 10-10 c.

Изобретение относится к физическим методам обработки твердосплавных пластин режущего инструмента, в частности к электроимпульсной обработке, и может найти применение в металлообрабатывающей, машиностроительной и инструментальной отраслях промышленности.

Известен способ упрочнения инструмента из ферромагнитных материалов (Авторское свидетельство СССР №52267, кл. B22F 3/24, 1937). Упрочнение инструмента происходит при обработке рабочих кромок инструмента лазерным излучением плотностью мощности 5×107-1×108 Вт/м2 и последующей выдержке в магнитном поле напряженностью 6×104-7×104 А/м, частотой импульсов 4-6 Гц в течение 40 с. При лазерной обработке резцов из быстрорежущей стали Р6М5 и неперетачиваемых пластинок из твердого сплава Т5К10 применялась лазерная установка непрерывного действия ЛГН-702 мощностью 800 Вт. Инструмент и пластинки устанавливались на столе фрезерного станка 675ПФ1. Фокусирующая система устанавливалась в приспособлении вне станка. Передвижение лазерного луча по инструменту обеспечивалось подачей стола. Затем резцы и неперетачиваемые пластинки подвергались обработке в магнитно-импульсном поле на установке МИУРИ-2М. Напряженность поля составляла 6×104-7×104 А/м, выдержка 40 с, частота импульсов 4-6 Гц.

Как видно из приведенного описания, недостатками данного способа являются необходимость применения специальной установки, большие затраты энергии, длительность цикла обработки и невозможность переточки, так как в этом случае обрабатывается поверхностный слой.

Наиболее близким по достигаемому результату и технической сущности к предлагаемому способу является способ упрочнения пластин режущего инструмента импульсным электрическим током с частотой 50 Гц с удельной энергией 1,48-3,5 Дж/мм3 и длительностью воздействия 0,1-0,5 с (патент РФ № 2041025, B22F 3/24, C21D 1/09, опубл. 09.08.1995).

Этот способ в значительной степени экономичен, повышает стойкость и стабильность режущих свойств пластин инструмента и не требует больших затрат материалов.

К недостаткам данного способа следует отнести объемный нагрев режущей пластины (РП), что делает невозможным обработку режущих пластин на основе кубического нитрида бора, так как при нагревании идет процесс разупрочнения зерен кубического нитрида бора.

Задача изобретения - исключение объемного нагрева режущей пластины при осуществлении способа.

Технический результат - повышение износостойкости инструмента и расширение технологических возможностей способа.

Заявленный технический результат достигается тем, что в способе обработки твердосплавных пластин режущего инструмента, включающем воздействие на пластины импульсным электрическим током, воздействие осуществляют импульсами электрического тока с частотой 10-100 кГц с энергией 1-100 кДж и длительностью воздействия 10-3-10-5 с.

Изобретение поясняется графическими материалами, где представлены:

на Фиг. 1 - принципиальная схема генератора импульсных токов;

на Фиг. 2 - схема нагружения режущих пластин при определении максимальной нагрузки разрушения: а) - в осевом направлении; б) - в радиальном направлении.

Для реализации способа использовался генератор импульсов тока (ГИТ) (см. Фиг. 1). Принцип работы ГИТ заключается в том, что от источника переменного тока (напряжением 220 В/380 В) через трансформатор Тр и выпрямитель В происходит зарядка конденсаторной батареи С.При достижении заданного уровня энергии с помощью разрядника Р осуществляется мгновенная разрядка конденсаторной батареи через РП.

Пример 1 конкретной реализации способа.

Объектом для упрочнения являлись РП цилиндрической формы диаметром 12 мм твердого сплава Т14К8, использующиеся в сборных фасонных фрезах для механической обработки профиля колесных пар локомотивов. Партии РП до и после упрочнения исследовали по следующим методикам: определение твердости, максимальной нагрузки разрушения, испытания на износостойкость, определение эксплуатационных свойств.

Измерение температуры РП в процессе электроимпульсной обработки проводилось с применением термокрасок. Цвет термокраски в процессе электроимпульсной обработки не изменился, что говорит об отсутствии объемного нагрева, вследствие чего на порядок снижаются энергозатраты.

Для определения прочностных характеристик РП была использована традиционная схема проведения статических механических испытаний, которая приближается к реальным условиям их нагружения в процессе резания: это испытания по определению максимальной нагрузки разрушения Pmax под действием осевых сжимающих напряжений (Фиг. 2).

При нагружении до Р=10000 кгс по схеме (см. Фиг. 2, а) разрушения образцов не происходит. Испытания по схеме (см. Фиг. 2, б) показали, что после электроимпульсной обработки происходит увеличение Pmax по сравнению с исходным состоянием в среднем на 20%: Pmax исх: = 1180±80 кгс; Pmax эио = 1400±100 кгс. При этом после электроимпульсной обработки наблюдается также повышение твердости материала РП: HRAиcx = 89,5±0,5 ед., НRAэио = 92,0±0,5.

Далее были проведены испытания по оценке износостойкости РП до и после электроимпульсной обработки. В качестве критерия оценки износостойкости использовалась величина износа по задней поверхности h3, мм. Режим резания - точение стали марки У8 (HRC 48…50 ед.) без охлаждения, станок модели 16К20, скорость резания ν=26 м/мин, подача S=0,11 мм/об, глубина резания t=0,5 мм, время резания τ=10 мин. Результаты испытаний приведены в Таблице 1.

Из таблицы 1 видно, что износостойкость РП после электроимпульсной обработки в среднем на 14% выше по сравнению с исходным состоянием. При этом среднеквадратичное отклонение и коэффициент вариации величины износа соответственно на 35% и 20% меньше, чем в исходном состоянии. Это свидетельствует об уменьшении неоднородности материала РП по структуре и свойствам.

Эксплуатационные испытания проводились на колесофрезерном станке модели КЖ-20 при общепринятых в депо режимах резания. Обточке подвергались колеса электропоездов. Материал - колесная сталь, ГОСТ 10791-89. Для того чтобы обеспечить примерно идентичные условия работы упрочненных и неупрочненных режущих РП, была использована фреза, на одном из ножей которой были установлены упрочненные РП, а на двух других соседних - РП в состоянии поставки. Контроль осуществлялся только за этими тремя ножами. За критерий отказа инструмента принимался технологический критерий, при котором дальнейшая работа фрезой невозможна из-за потери чистоты обрабатываемой поверхности или износа РП по задней поверхности, превышающего 1,0 мм.

Испытания показали, что стойкость упрочненных РП фрез в 1,1-1,3 раза выше стойкости РП в состоянии поставки.

Пример 2 конкретной реализации способа.

Электроимпульсной обработке подвергали двухслойные режущие пластины, изготовленные методом направленной пропитки в камере высокого давления. Основные структурные составляющие - частицы кубического нитрида бора, металлическая связка на основе Ti-Cu. Различные упрочняющие фазы: нитриды, бориды, интерметаллиды. Методически работу проводили следующим образом. РП (в количестве 20 штук) подвергали испытаниям на резание по режиму: скорость резания ν=40 м/мин, подача S=0,2 мм/об, глубина резания t=0,5 мм, обрабатываемый материал - сталь ХВГ твердостью 48-50 HRC, резание без охлаждения. Затем пластины были разделены на три группы, отличающиеся по величине износа h3 по задней поверхности: I - c высокой износостойкостью, II -средней, III - низкой.

В таблице 2 приведены результаты испытаний.

Из таблицы 2 видно, что электроимпульсная обработка согласно заявленному способу повышает износостойкость РП всех трех групп. Причем максимальный эффект повышения износостойкости (до 4,3 раз) достигается на РП, имеющих в исходном состоянии самую низкую износостойкость.

Вышеизложенное позволяет сделать вывод о том, что поставленная задача изобретения - исключение объемного нагрева режущей пластины при осуществлении способа - решена, и заявленный технический результат - повышение износостойкости инструмента и расширение технологических возможностей способа - достигнут.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в независимом пункте формулы признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, не известной на дату приоритета из уровня техники необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к физическим методам обработки твердосплавных пластин режущего инструмента, в частности к электроимпульсной обработке, и может найти применение в металлообрабатывающей, машиностроительной и инструментальной отраслях промышленности;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте нижеизложенной формулы, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует требованиям условий патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Способ обработки твердосплавных пластин режущего инструмента, включающий воздействие на пластины импульсным электрическим током, отличающийся тем, что воздействие осуществляют импульсами электрического тока с частотой 10-100 кГц с энергией 1-100 кДж и длительностью воздействия 10-10 c.
СПОСОБ ОБРАБОТКИ ТВЕРДОСПЛАВНЫХ ПЛАСТИН РЕЖУЩЕГО ИНСТРУМЕНТА
СПОСОБ ОБРАБОТКИ ТВЕРДОСПЛАВНЫХ ПЛАСТИН РЕЖУЩЕГО ИНСТРУМЕНТА
Источник поступления информации: Роспатент

Showing 111-111 of 111 items.
20.05.2023
№223.018.6737

Способ восстановления профиля поверхности катания колес рельсового транспорта

Изобретение относится к области машиностроения. Способ включает нагрев поверхностного слоя вращающегося колеса фрикционным элементом и обточку упомянутого поверхностного слоя вращающегося колеса резцом, где в качестве фрикционного элемента используют тормозную колодку, соответствующую...
Тип: Изобретение
Номер охранного документа: 0002754627
Дата охранного документа: 06.09.2021
Showing 131-140 of 142 items.
04.07.2020
№220.018.2e79

Цельная концевая керамическая фреза

Изобретение относится к области обработки металлов фрезерованием и предназначено для формообразования плоских участков, пазов и уступов на деталях из труднообрабатываемых материалов, в том числе из жаропрочных сталей на станках с ЧПУ. Цельная концевая керамическая фреза с тороидальным режущим...
Тип: Изобретение
Номер охранного документа: 0002725533
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2e82

Электролит для анодного плазменно-электролитного модифицирования

Изобретение относится к области металлургии, а именно к составу электролита для плазменного химико-термического модифицирования металлов и сплавов, и может использоваться для повышения износостойкости поверхности обрабатываемых изделий. Электролит для анодного плазменно-электролитного...
Тип: Изобретение
Номер охранного документа: 0002725492
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2e90

Спеченная лигатура из порошковых материалов для легирования алюминиевых сплавов

Изобретение относится к области металлургии металлов и сплавов, а именно к производству лигатур на основе алюминия для легирования сплавов на основе алюминия, содержащих тугоплавкие металлы. Спеченная лигатура из порошковых материалов для легирования алюминиевых сплавов содержит, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002725498
Дата охранного документа: 02.07.2020
11.07.2020
№220.018.31e6

Устройство для обработки изделий быстрыми атомами

Изобретение относится к машиностроению, в частности к устройствам для обработки поверхности изделий быстрыми атомами с целью получения изделий с повышенными механическими и электрофизическими характеристиками поверхности за счет имплантации в нее легирующих элементов и формирования в ней...
Тип: Изобретение
Номер охранного документа: 0002726187
Дата охранного документа: 09.07.2020
12.07.2020
№220.018.3213

Магнетронное распылительное устройство

Изобретение относится к ионно-плазменной технологии и может быть использовано для осаждения покрытий на изделия в вакууме. Магнетронное распылительное устройство содержит плоскую круглую мишень, являющуюся катодом тлеющего разряда, магнитную систему, один из полюсов которой прилегает к центру...
Тип: Изобретение
Номер охранного документа: 0002726223
Дата охранного документа: 10.07.2020
12.04.2023
№223.018.46e6

Устройство для обработки диэлектрических изделий быстрыми атомами

Изобретение относится к области обработки диэлектрических изделий ускоренными ионами или быстрыми атомами и предназначено для травления канавок с высоким аспектным отношением и получения изделий с повышенными механическими и электрофизическими характеристиками поверхности за счет имплантации в...
Тип: Изобретение
Номер охранного документа: 0002752877
Дата охранного документа: 11.08.2021
12.04.2023
№223.018.46f5

Способ микротекстурирования поверхностного слоя керамических пластин электроэрозионной обработкой

Изобретение относится к области машиностроения, в частности к микротекстурированию поверхностного слоя керамических пластин электроэрозионной обработкой, и может быть использовано на заключительном этапе изготовления сменных многогранных керамических пластин на основе α/β-модификаций спеченного...
Тип: Изобретение
Номер охранного документа: 0002751606
Дата охранного документа: 15.07.2021
09.05.2023
№223.018.530b

Устройство для получения изделий методом селективного лазерного плавления

Изобретение относится к области порошковой металлургии и аддитивных технологий, в частности к изготовлению изделий сложной пространственной конфигурации из мелкодисперсного металлического порошка методом селективного лазерного плавления. Устройство содержит силовую раму, установленную на ней...
Тип: Изобретение
Номер охранного документа: 0002795149
Дата охранного документа: 28.04.2023
20.05.2023
№223.018.6737

Способ восстановления профиля поверхности катания колес рельсового транспорта

Изобретение относится к области машиностроения. Способ включает нагрев поверхностного слоя вращающегося колеса фрикционным элементом и обточку упомянутого поверхностного слоя вращающегося колеса резцом, где в качестве фрикционного элемента используют тормозную колодку, соответствующую...
Тип: Изобретение
Номер охранного документа: 0002754627
Дата охранного документа: 06.09.2021
21.05.2023
№223.018.684a

Магнетронное распылительное устройство

Изобретение относится к устройствам для осаждения покрытий на изделия в вакуумной камере и предназначено для получения изделий со сверхтвердыми покрытиями с улучшенной адгезией и низким коэффициентом трения за счет добавления к осаждаемым на изделии атомам распыляемой магнетронной мишени атомов...
Тип: Изобретение
Номер охранного документа: 0002794524
Дата охранного документа: 20.04.2023
+ добавить свой РИД