×
10.07.2016
216.015.569f

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ПОВЕРХНОСТЕЙ ЛОПАТОК РОТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ НА СТАНКАХ С ЧПУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей на станках с ЧПУ. Способ включает обработку концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности. Выбирают оптимальную частоту вращения шпинделя, для чего для обрабатываемой лопатки строят расчетную последовательность математических конечно-элементных моделей с моделированием условий закрепления, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке. Рассчитывают значения собственных частот обрабатываемой лопатки для каждой зоны. Проводят оценку совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки. Строят графики для визуализации выбора частоты вращения шпинделя. Осуществляют ступенчатую регулировку частоты вращения шпинделя в процессе обработки и регулировку частоты вращения по линейному закону по заданной программе. Исключается резонанс при обработке лопатки. 6 ил.
Основные результаты: Способ обработки профиля пера лопатки ротора газотурбинного двигателя на станках с ЧПУ, включающий обработку аэродинамической поверхности лопатки концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности, и выбор оптимальной частоты вращения шпинделя для обрабатываемой лопатки путем построения расчетной последовательности математических конечно-элементных моделей с моделированием условий закрепления обрабатываемой лопатки, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке, расчета значения собственных частот обрабатываемой лопатки для каждой зоны и оценки совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки, отличающийся тем, что строят графики для визуализации выбора частоты вращения шпинделя, определяемой частотой импульсного воздействия зубьев торовой фрезы на заготовку, при этом в процессе обработки осуществляют ступенчатую регулировку частоты вращения шпинделя и плавную по линейному закону регулировку частоты вращения шпинделя на участке перемещения торовой фрезы, размер которого выбирают из условия отсутствия пересечения частот спектра сил резания, определяемых частотами вращения шпинделя, и собственных частот обрабатываемой лопатки.

Предлагаемое изобретение относится к области обработки металлов резанием и может быть использовано в машиностроении, а именно в авиадвигателестроении, при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности лопаток компрессора, концевыми фрезами на фрезерных станках с числовым программным управлением (ЧПУ).

При изготовлении аэродинамических моделей лопаток роторов газотурбинных двигателей, предъявляются особые требования к точности изготовления (~0,02-0,05 мм), существенно превышающие требования к конструкциям в составе серийных изделий. Основную сложность представляет изготовление аэродинамических поверхностей лопаток, имеющих малые относительные толщины при выраженном осевом габарите (200-300 мм). Толщина профиля в концевом сечении может достигать 0,7-0,8 мм при длине хорды ~40 мм. При таких толщинах наряду с требованиями по точности изготовления возникает ряд эффектов, существенно осложняющих изготовление таких деталей.

Сила резания при фрезеровании отжимает деталь от инструмента. При малых относительных толщинах, характерных для лопаток вентиляторов, величина отжима может существенно превышать точность обработки, что приведет к недоработке припуска в зонах с малой жесткостью и соответственно большим прогибам. Определяющее влияние на величину прогиба оказывают сила резания, последовательность удаления и величина припуска, повышающего жесткость обрабатываемой поверхности тонкостенных деталей и их элементов. При этом сила резания определяется положением фрезы относительно обрабатываемой поверхности (пространственной ориентацией), направлением движения фрезы относительно поверхности, величинами технологических параметров обработки (подача на зуб, величина припуска на обработку, шага между строчками), которые определяют производительность. При обработке лопаток выбор стратегии обработки и технологических параметров диктуется требованиями к точности изготовления.

Известен способ обработки нежестких деталей (описание изобретения к авторскому свидетельству SU 1400798, МПК4 B23C 3/00, 1988 г.), преимущественно лопаток газотурбинных двигателей, концевой фрезой, при котором определяют величину снимаемого припуска, ведут обработку за один проход и перемещают фрезу вдоль обрабатываемой поверхности эквидистантно ей. Обработку ведут периферийной частью концевой фрезы. После обработки первой детали определяют погрешность ее изготовления, замеряют величину отжима детали на ширине обработки и корректируют положение фрезы и детали относительно друг друга с учетом величины этого отжима. При данном способе обработки получается невысокая точность обработки при малых скоростях резания. Для уменьшения брака от вибраций оставляют значительный (0,1-0,15 мм) припуск для слесарной доработки, которая увеличивает время изготовления деталей и снижает точность изготовления.

Известен способ изготовления аэродинамических моделей лопаток роторов на станках с ЧПУ (патент РФ №2481177, МПК B23C 3/18, 2013 г.). При данном способе изготовления аэродинамических моделей лопаток роторов достигается высокая точность при высоких скоростях резания, но необходимо изготовить дополнительно с высокой точностью лонжерон, который наклеивают на обработанную поверхность аэродинамической модели лопатки, а затем удаляют наклеенный лонжерон нагревая лопатку до температуры перехода клея в жидкое состояние. Такой способ оправдывает себя при обработке большой партии аэродинамических моделей лопаток роторов, так как затрачивается 70-80 нормочасов на изготовление лонжерона.

Наиболее близким к предлагаемому техническому решению является изобретение «Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с ЧПУ» по патенту РФ 2500506, МПК B23C 3/18, 2013 г., согласно которому лопатку обрабатывают концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности, при этом для обрабатываемой лопатки строят последовательность конечно-элементных математических моделей с моделированием условий закрепления лопатки, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке, рассчитывают значения собственных частот обрабатываемой лопатки для каждой зоны, для коррекции полученных значений собственных частот дополнительно измеряют собственные частоты обрабатываемой лопатки экспериментально для каждой зоны с использованием системы «возбудитель-датчик», оценивают совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки, объединяют зоны с близкими частотными характеристиками таким образом, чтобы исключить резонанс при взаимодействии со спектральными составляющими силы резания, определяют рабочую частоту вращения шпинделя, выбранную частоту используют в управляющей программе обработки лопаток для станка с ЧПУ.

Основным недостатком рассматриваемого технического решения является то, что при значительном изменении собственных частот колебаний обрабатываемой заготовки оказывается невозможным выбрать режим обработки, исключающий возникновение вибраций для всей детали. В этом случае для определенных участков (по длине лопатки) резонансные вибрации возникают при любой выбранной частоте вращения шпинделя и соответственно частоте воздействия силы резания. Вибрации при обработке деталей с малой относительной толщиной приводят к возникновению глубоких рисок на поверхности, отжиму обрабатываемой детали от инструмента и, как следствие, к браку.

Задачей предлагаемого изобретения является изготовление аэродинамических поверхностей лопаток роторов газотурбинных двигателей, имеющих малые относительные толщины при выраженном осевом габарите и максимально возможное сокращение сроков их изготовления.

Техническим результатом является исключение резонанса между частотами колебаний фрезы, воздействующих на обрабатываемую поверхность, и собственными частотами обрабатываемой лопатки.

Решение задачи и технический результат достигаются тем, что в способе обработки профиля пера лопатки ротора газотурбинного двигателя на станках с ЧПУ, включающем обработку аэродинамической поверхности лопатки концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности и выбор оптимальной частоты вращения шпинделя для обрабатываемой лопатки путем построения расчетной последовательности математических конечно-элементных моделей с моделированием условий закрепления обрабатываемой лопатки, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке, расчета значения собственных частот обрабатываемой лопатки для каждой зоны и оценки совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки, строят графики для визуализации выбора частоты вращения шпинделя, определяемой частотой импульсного воздействия зубьев торовой фрезы на заготовку, применяют ступенчатую регулировку частоты вращения шпинделя в процессе обработки, далее регулировку частоты вращения выполняют непрерывно по линейному закону, участок выполнения заданной программы из нескольких строчек определяется совокупностью локальных перемещений торовой фрезы, а размер участка выбирают из условия отсутствия пересечений частот спектра сил резания, воздействующих на обрабатываемую лопатку, и собственных частот обрабатываемой лопатки.

- выполняют регулировку частоты вращения непрерывно по линейному закону при отработке участка программы из нескольких строчек - локальных перемещений инструмента по программе;

- выбирают размер участка перемещений торовой фрезы с изменяемой частотой по линейному закону из условия отсутствия пересечений частот спектра силы резания, определяемых частотами вращения шпинделя, воздействующими на обрабатываемую поверхность, и собственными частотами обрабатываемой лопатки при плавном изменении частоты вращения шпинделя.

Частоты импульсного воздействия зубьев фрезы на заготовку определяются на основе спектрального разложения силы резания. На фиг. 2 показано изменение силы резания в направлении нормали к поверхности обрабатываемой заготовки. Сила отрицательна, так как фреза отжимает заготовку. Периодический сигнал сил резания раскладывается в спектр с использованием разложения Фурье и может быть представлен в виде частотных гармоник (фиг. 3) с заданной амплитудой и кратными частотами. Наибольшую амплитуду имеет первая гармоника, для остальных гармоник - их амплитуда уменьшается с увеличением частоты. Частотные гармоники воздействуют на заготовку и вызывают вибрации, при этом, чем больше амплитуда гармоники в спектре, тем интенсивнее вызываемые ею вибрации.

На графике, приведенном на фиг. 4, показаны условия, при которых невозможно выбрать оптимальную постоянную частоту вращения шпинделя, обеспечивающую исключение резонанса между частотами колебаний фрезы, воздействующих на обрабатываемую поверхность (кратные частоты f возб. на фиг. 4, 5, 6), и собственными частотами обрабатываемой лопатки, закрепленной в приспособлении, см. фиг. 1 (форма 1, форма 2 на фиг. 4, 5, 6), так как отсутствуют частотные окна для выбора режима обработки оптимальной постоянной частоты вращения шпинделя. Крестами на графике обозначены частоты с возможным возникновением явлений резонанса. Поэтому производят дополнительные расчеты и коррекцию частоты вращения шпинделя на нескольких участках, в результате получают, что для каждого из участков возможно подобрать соответствующий режим обработки, исключающий резонанс (фиг. 5). Изменение частоты вращения между участками соответствует скачкообразному изменению частот спектра возбуждения вибраций на диаграмме. Изменения режимов обработки соответствуют ступенькам на пунктирных линиях, определяющих частотный спектр силы резания. Недостатком в этом случае является образование «ступеньки» на поверхности лопатки из-за резкого изменения частоты вращения шпинделя и соответственно скорости резания.

На фиг. 6 показано как регулировка частоты вращения может быть выполнена непрерывно с изменением частоты вращения по линейному закону при отработке участка программы из нескольких строчек (строчка - совокупность локальных перемещений инструмента, выполняемых по заложенной программе). Современные обрабатывающие центры с ЧПУ и средства программирования обработки позволяют выполнять регулировку режимов обработки для каждой группы локальных перемещений, заложенных в программу обработки изделия в отдельности. Размер участка программы с изменением частоты вращения по линейному закону определяют из условия, что он с одной стороны должен быть достаточно большим, чтобы уйти от следа на поверхности, оставляемого при ступенчатом изменении частоты вращения, с другой - ограничивается отсутствием пересечений частотного спектра и собственных частот деталей при плавном изменении частоты. Из графика фиг. 6 видно, что для исключения резонанса между частотами вращения шпинделя, определяемыми изменением частот спектра силы резания, воздействующими на обрабатываемую поверхность, и собственными частотами обрабатываемой лопатки, выбирают частоты вращения шпинделя лежащие на графике выше второй формы собственных частот обрабатываемой лопатки.

Поскольку решением задачи и техническим результатом изобретения является изготовление аэродинамических поверхностей лопаток роторов газотурбинных двигателей, имеющих малые относительные толщины при выраженном осевом габарите и максимально возможное сокращение сроков их изготовления, то найденные оптимальные частоты вращения шпинделя станка, исключающие явление резонанса, позволяют решить эту задачу. Данный метод был успешно применен к изготовлению аэродинамических моделей лопаток роторов газотурбинных двигателей.

Способ обработки профиля пера лопатки ротора газотурбинного двигателя на станках с ЧПУ, включающий обработку аэродинамической поверхности лопатки концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности, и выбор оптимальной частоты вращения шпинделя для обрабатываемой лопатки путем построения расчетной последовательности математических конечно-элементных моделей с моделированием условий закрепления обрабатываемой лопатки, соответствующих последовательному позонному удалению предварительно заданной величины припуска при обработке, расчета значения собственных частот обрабатываемой лопатки для каждой зоны и оценки совпадения расчетных и экспериментальных частотных характеристик обрабатываемой лопатки, отличающийся тем, что строят графики для визуализации выбора частоты вращения шпинделя, определяемой частотой импульсного воздействия зубьев торовой фрезы на заготовку, при этом в процессе обработки осуществляют ступенчатую регулировку частоты вращения шпинделя и плавную по линейному закону регулировку частоты вращения шпинделя на участке перемещения торовой фрезы, размер которого выбирают из условия отсутствия пересечения частот спектра сил резания, определяемых частотами вращения шпинделя, и собственных частот обрабатываемой лопатки.
СПОСОБ ИЗГОТОВЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ПОВЕРХНОСТЕЙ ЛОПАТОК РОТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ НА СТАНКАХ С ЧПУ
СПОСОБ ИЗГОТОВЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ПОВЕРХНОСТЕЙ ЛОПАТОК РОТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ НА СТАНКАХ С ЧПУ
СПОСОБ ИЗГОТОВЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ПОВЕРХНОСТЕЙ ЛОПАТОК РОТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ НА СТАНКАХ С ЧПУ
СПОСОБ ИЗГОТОВЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ПОВЕРХНОСТЕЙ ЛОПАТОК РОТОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ НА СТАНКАХ С ЧПУ
Источник поступления информации: Роспатент

Showing 111-120 of 261 items.
20.05.2015
№216.013.4daa

Способ бесконтактных измерений геометрических параметров объекта в пространстве и устройство для его осуществления

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических...
Тип: Изобретение
Номер охранного документа: 0002551396
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.51cf

Способ получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали. Способ включает: зачистку контактных поверхностей заготовок из стали и алюминия механическим способом,...
Тип: Изобретение
Номер охранного документа: 0002552464
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5265

Способ получения сталеалюминиевого соединения сваркой плавлением

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением...
Тип: Изобретение
Номер охранного документа: 0002552614
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55e2

Способ разрушения ледяного покрова

Изобретение относится к технологиям разрушения ледяного покрова для вскрытия прохода через ледовое поле. Способ разрушения ледяного покрова основан на использовании двух видов воздействия на ледяное поле: облучение мощным лазерным излучением и нагружение льда корпусом ледокола. На ледоколе...
Тип: Изобретение
Номер охранного документа: 0002553516
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d9

Композиционный наноструктурированный порошок для нанесения покрытий

Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для...
Тип: Изобретение
Номер охранного документа: 0002553763
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56df

Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Изобретение относится к способу импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов. Изобретение может быть использовано в судостроении, авиастроении, ракетостроении и других отраслях машиностроения. Формируют X-образный профиль свариваемых кромок и выполняют многопроходную...
Тип: Изобретение
Номер охранного документа: 0002553769
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56fd

Износо-коррозионностойкий медно-никелевый сплав

Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации,...
Тип: Изобретение
Номер охранного документа: 0002553799
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.59b5

Движительно-рулевая колонка

Изобретение относится к области судостроения и может быть использовано в конструкциях судовых движителей. Движительно-рулевая колонка содержит основание колонки, баллер, приводной вал, который расположен внутри баллера, механизм поворота колонки, угловой редуктор, обтекаемую гондолу,...
Тип: Изобретение
Номер охранного документа: 0002554506
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.63e0

Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости...
Тип: Изобретение
Номер охранного документа: 0002557115
Дата охранного документа: 20.07.2015
Showing 111-120 of 201 items.
27.01.2015
№216.013.2081

Способ измерения параметров потока на выходе из протоков моделей ла

Заявленное изобретение относится к области экспериментальной аэродинамики, в частности к способу определения аэродинамических характеристик (АДХ) моделей летательных аппаратов (ЛА), и может быть использовано в аэродинамических трубах (АДТ) при определении параметров потока на выходе из протоков...
Тип: Изобретение
Номер охранного документа: 0002539769
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2225

Поршень форсированного дизельного двигателя

Изобретение может быть использовано в дизельных двигателях. Поршень форсированного дизельного двигателя состоит из двух стальных сваренных между собой нижнего и верхнего фрагментов (1) и (2), образующих периферийную и центральную полости (3) и (4) охлаждения головки поршня, сообщенные основными...
Тип: Изобретение
Номер охранного документа: 0002540194
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2258

Способ определения работоспособности гидроакустического тракта в натурных условиях

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. На вход проверяемого гидроакустического тракта подают тестовые сигналы в виде тепловых шумов Джонса с...
Тип: Изобретение
Номер охранного документа: 0002540245
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23fc

Способ изготовления сотового заполнителя

Изобретение относится к способам изготовления сотовых заполнителей для трехслойных панелей и оболочек и касается способа изготовления сотового заполнителя (СЗ) из стеклоткани. На полотно стеклоткани в продольном направлении наносят с заданным шагом клеевые полосы, подсушивают их и разрезают...
Тип: Изобретение
Номер охранного документа: 0002540665
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29ed

Индуктор для магнитно-импульсной раздачи трубчатых заготовок

Изобретение относится к обработке металлов давлением, в частности к индукторам для магнитно-импульсной обработки. Используют токоподвод коаксильного типа, образованный торцовым токовыводом, выполненным в виде стальной трубы с фланцем, закрепленным на торце спирали индуктора, и изолированно...
Тип: Изобретение
Номер охранного документа: 0002542190
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3111

Судовая электроэнергетическая установка

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам. Судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, дополнительный двигатель, соединенный с дополнительным генератором, гребной электродвигатель,...
Тип: Изобретение
Номер охранного документа: 0002544029
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3122

Механический демпфер низкоамплитудных колебаний с вращательными парами трения

Изобретение относится к машиностроению. На основании демпфера шарнирно закреплена кольцевая фасонная пружина. Внутри основания установлено стальное кольцо. На внутреннюю поверхность кольца нанесено покрытие с заданными трибологическими характеристиками. Внутри кольца расположен вал-эксцентрик,...
Тип: Изобретение
Номер охранного документа: 0002544046
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
+ добавить свой РИД