×
10.08.2016
216.015.54c6

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВ С ТОНКОПЛЕНОЧНЫМИ СВЕРХПРОВОДНИКОВЫМИ ПЕРЕХОДАМИ

Вид РИД

Изобретение

Аннотация: Использование: для изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов. Сущность изобретения заключается в том, что наносят без разрыва вакуума трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН контакт); наносят резист, проводят экспозицию, проявление; селективное химическое или ионное травление трехслойной структуры, после стравливания трехслойной структуры проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку перемычки (абсорбера) из нормального металла или другого сверхпроводника, при этом этот слой перемычки наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм. Технический результат: обеспечение возможности повышения воспроизводимости многоэлементных интегральных сверхпроводниковых схем, снятия ограничения на форму площади переходов, толщину верхнего электрода, устранения паразитных закороток. 4 н.п. ф-лы, 1 ил.

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности, к изготовлению сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник - изолятор - сверхпроводник (СИС и СИСИС), структур сверхпроводник - изолятор - нормальный металл (СИН и СИНИС), болометров на холодных электронах, Андреевских интерферометров.

Известен способ-аналог: изготовление СИС туннельного перехода с разрывом вакуума [1]. По этому способу т.н. раздельной технологии выполняют следующие операции: выполняют обратную литографию, наносят первый слой металла, взрывают фоторезист, делают вторую литографию, чистку, окисление, нанесение верхней пленки металла, взрыв резиста. Недостатком аналога является низкое качество туннельного барьера за счет разрыва вакуума перед нанесением верхнего слоя туннельного перехода и необходимость проведения как минимум двух операций фото- или электронной литографии с необходимостью совмещения слоев.

Известен способ-аналог:

изготовление сверхпроводниковых туннельных переходов и одноэлектронных транзисторов теневым напылением под двумя углами через подвешенную маску из электронного резиста для уменьшения количества этапов литографии. Метод теневого напыления под разными углами через подвешенную двухслойную маску, сформированную с помощью электронно-лучевой литографии, впервые был предложен в 1977 году G.J. Dolan [2]. В этой технологии двухслойная маска используется для напыления под разными углами двух слоев металла и формирования трехслойной структуры сверхпроводник - изолятор - сверхпроводник. Окисление нижнего слоя алюминия в процессе изготовления позволяет получить, в частности, джозефсоновские туннельные переходы высокого качества. В случае, если нижний слой представляет собой нормальный металл, а верхний напыляют без окисления, образуется т.н. андреевский контакт. По этой методике можно изготавливать переходы размером 0.1 мкм и меньше.

Метод позволяет обойтись одним этапом литографии вместо двух как в предыдущем случае.

Известен способ-прототип:

технология изготовления СИС трехслойной структуры Гурвича, которая формируется без разрыва вакуума через окно в фоторезисте [3]. Это наиболее распространенная технология получения высококачественных туннельных переходов напылением без разрыва вакуума, в которой после напыления первого слоя металла производят его оксидирование в той же камере в атмосфере кислорода при определенном давлении, затем продолжают откачку и наносят второй слой пленки металла. Существенным усложнением является необходимость дополнительного анодного окисления торцов пленок ниобия для устранения закороток на краях пленок. Также недостатком является необходимость напылять достаточно толстые пленки последующих слоев металлов, чтобы избежать разрывов на краях предыдущих слоев. Этот способ достаточно хорошо зарекомендовал себя при изготовлении ниобиевых переходов, однако неприменим для алюминиевых структур, поскольку стандартные фоторезисты проявляются в щелочных проявителях, растворяющих алюминий.

Для формирования туннельных переходов по способу-прототипу

1) наносят без разрыва вакуума на всю подложку трехслойную структуру, состоящую из нижнего слоя сверхпроводника, обычно ниобия, тонкого слоя алюминия, который затем окисляют для формирования туннельного барьера толщиной 1-1.2 нм, верхнего слоя сверхпроводника, обычно ниобия,

2) наносят слой фоторезиста и запекают его,

3) проводят экспозицию с использованием фотолитографии для формирования нижнего электрода,

4) проявляют резист,

5) селективно химически стравливают всю трехслойную структуру вне области нижнего электрода),

6) проводят вторую литографию для формирования области туннельного перехода аналогично пп. 2, 3, 4,

7) проводят селективное травление верхнего слоя ниобия,

8) проводят анодное оксидирование открытых торцов пленок ниобия,

9) формируют соединительные проводники к верхнему электроду в третьем слое литографии с нанесением пленки проводников и ее удалением вне экспонированной области методом взрыва (обратная литография).

Технология создания высококачественных туннельных переходов требуется для одноэлектронных устройств [4], для электронных охладителей структуры сверхпроводник - изолятор - нормальный металл (СИН) [5], СИНИС болометров на холодных электронах [6], использующих прямое электронное охлаждение абсорбера. Для применений, использующих электронное охлаждение, требуются переходы относительно большой площади, тогда как классическая технология теневого напыления по способу-аналогу ограничена площадью перехода менее 1 мкм2, что определяется перехлестом напыляемых пленок, расположенных под подвешенным мостиком из фоторезиста. Также для болометров и охладителей требуется наносить слой нормального металла малой толщины, что противоречит требованию увеличения толщины последующих слоев для классической планарной технологии с целью избегания разрывов пленок последующих слоев.

Перечисленные приложения в случае серийного промышленного производства требуют применения современных методов магнетронного напыления и оптической литографии для снятия ограничения по площади, устранения паразитных теней, сохранения высокого качества туннельного барьера. Применение модифицированных методов теневого термического напыления в способах-аналогах, например метода изготовления самосовмещенных туннельных переходов большой площади [7, 8], не позволяет получить высокой степени воспроизводимости структур, а сам метод не является технологичным для серийного производства.

Недостатками аналогов являются ограничение площади перехода размером подтрава нижнего слоя резиста, что не позволяет получить туннельные переходы шире 0.2-0.3 мкм, и образование паразитных теней параллельно узкому слою нижнего электрода. Эти недостатки приводят к появлению паразитной шунтирующей емкости и паразитного сопротивления утечки. Недостатком прототипа является то, что в качестве материала абсорбера в СИНИС структурах используется тот же металл, что и для нормального электрода, тогда как для согласования импедансов необходимо иметь возможность варьировать удельное сопротивление абсорбера. Существенным недостатком прототипа является необходимость напылять толстые пленки верхнего нормального металла, что снижает чувствительность болометров и ухудшает характеристики электронного охлаждения.

Нами разработан способ изготовления высококачественных тонкопленочных туннельных переходов произвольной площади методом модифицированного трехслойной структуры с последующей планаризацией поверхности.

Целью предлагаемого изобретения является повышение воспроизводимости многоэлементных интегральных сверхпроводниковых схем, формирование произвольной формы высококачественных туннельных переходов, снятие ограничения на форму и площадь переходов, толщину верхнего электрода, снятие ограничения на применение одного металла для различных элементов нормального электрода, устранение паразитных закороток на торцах пленок без дополнительной анодизации структур, планаризация формируемой структуры, устранение ограничения на уменьшение толщины верхнего электрода.

Сущность изобретения поясняется чертежом на Фиг. 1, где приведено сечение слоев тонких пленок в последовательности их нанесения:

A. Подложка (1) и слой соединительных проводников (2).

B. То же, и трехслойная структура (3) после травления через маску фоторезиста.

C. То же, с дополнительным слоем изолятора (4) для планаризации структуры.

D. То же, с тонкопленочной перемычкой (5) между верхними электродами.

Предлагаемый способ изготовления устройств по п. 1 формулы изобретения с тонкопленочными сверхпроводниковыми переходами структуры сверхпроводник - изолятор - нормальный металл (СИН) и сверхпроводник - изолятор - сверхпроводник (СИС), состоящими из двух слоев металла, разделенных туннельным переходом, характеризуется следующей последовательностью операций (см. Фиг. 1A-D):

1) На подложке (1) поверх сформированных соединительных проводников и контактных площадок (2), (Фиг. 1А) в едином цикле без разрыва вакуума наносят трехслойную структуру (3), состоящую из нижней пленки сверхпроводникового алюминиевого электрода, туннельного барьера толщиной 1-1.2 нм и верхней пленки нормального металла или сверхпроводника, в итоге получают трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН) или СИС.

2) Наносят фоторезист и запекают его для последующего формирования маски диэлектрика.

3) Проводят экспозицию с использованием фотолитографии с формированием топологии нижнего электрода.

4) Проявляют резист.

5) Проводят сквозное ионное травление всей трехслойной структуры (Фиг. 1В).

6) В открытые области наносят слой изолятора (4) толщиной, равной толщине удаленной трехслойной структуры.

7. Взрывают резист в ацетоне для удаления пленки изолятора, лежащих поверх области переходов (Фиг. 1С).

8. Дополнительным этапом обратной (взрывной) фотолитографии и магнетронным распылением формируют перемычку из тонкой пленки нормального металла (5), в том числе другого, или сверхпроводника, в том числе другого, соединяющую верхние электроды туннельных переходов (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной СИН структуры, с использованием той же фотомаски, что позволяет снизить толщину верхнего электрода СИН структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя СИН переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров, электронных охладителей, смесителей.

Предлагаемый способ изготовления устройств по п. 3 формулы изобретения с тонкопленочными сверхпроводниковыми андреевскими переходами структуры сверхпроводник - андреевский контакт - нормальный металл (САН), состоящими из сверхпроводящего и нормального металлов с андреевским контактом между ними, характеризуется следующей последовательностью операций:

1) на подложке (1) поверх сформированных соединительных проводников и контактных площадок (2) (Фиг. 1А) в едином цикле без разрыва вакуума наносят тонкопленочную структуру (3), состоящую из нижнего слоя сверхпроводникового алюминиевого электрода, и пленку верхнего электрода нормального металла (например, палладия или гафния), между которыми образуется андреевский контакт сверхпроводник - нормальный металл, в итоге получают трехслойную структуру сверхпроводник - андреевский контакт - нормальный металл (САН),

2) наносят фоторезист и запекают его,

3) проводят экспозицию с использованием фото- или электронной литографии с формированием топологии нижнего электрода,

4) проявляют резист,

5) проводят сквозное травление всей трехслойной структуры (Фиг. 1В),

6) в открытые области наносят слой изолятора (4) толщиной, равной толщине удаленной трехслойной структуры,

7) взрывают резист в ацетоне для удаления пленки изолятора, лежащих поверх области переходов (Фиг. 1С),

8 )формируют перемычку из тонкой пленки нормального металла (5), или сверхпроводника, в том числе другого, соединяющую верхние электроды туннельных переходов (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной САН структуры с использованием той же фотомаски, что позволяет снизить толщину верхнего электрода САН структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя САН переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров и андреевских интерферометров.

Предлагаемый способ изготовления устройств по п. 3 формулы изобретения с тонкопленочными сверхпроводниковыми переходами структуры сверхпроводник - полупроводник (супер-Шоттки), состоящими из сверхпроводникового и полупроводникового электродов с барьером Шоттки на границе, характеризуется следующей последовательностью операций:

1) на подложке (1) поверх сформированных соединительных проводников и контактных площадок (2) (Фиг. 1А), в едином цикле без разрыва вакуума наносят тонкопленочную структуру (3), состоящую из нижнего слоя сверхпроводникового алюминиевого электрода, и верхнего полупроводникового электрода, между которыми формируется область с барьером Шоттки, в итоге получают трехслойную структуру сверхпроводник - барьер Шоттки - полупроводник СШП,

2) наносят фоторезист и запекают его,

3) проводят экспозицию с использованием фото- или электронной литографии с формированием топологии нижнего электрода,

4) проявляют резист,

5) проводят сквозное травление всей трехслойной СШП структуры (Фиг. 1В),

6) в открытые области наносят слой диэлектрика (4) толщиной, равной толщине удаленной трехслойной структуры,

7) взрывают резист в ацетоне для удаления пленки изолятора, лежащих поверх области переходов (Фиг. 1С),

8) формируют перемычку из тонкой пленки нормального металла (5), в том числе другого, или сверхпроводника, в том числе другого, соединяющую верхние электроды туннельных переходов (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной СШП структуры, с использованием той же фотомаски, что позволяет снизить толщину верхнего электрода СШП структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя СШП переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров, электронных охладителей, смесителей.

Предлагаемый способ изготовления устройств по п. 4 формулы изобретения с тонкопленочными сверхпроводниковыми переходами структуры сверхпроводник - изолятор - нормальный металл (СИН) и сверхпроводник - изолятор - сверхпроводник (СИС), состоящими из двух слоев металла, разделенных туннельным переходом, характеризуется следующей последовательностью операций:

1) на подложке (1) поверх сформированных соединительных проводников и контактных площадок (2) (Фиг. 1А) наносят резист, запекают, экспонируют, проявляют для получения рисунка нижнего электрода,

2) в едином цикле без разрыва вакуума наносят трехслойную структуру (3), состоящую из нижнего слоя сверхпроводникового алюминиевого электрода, туннельного барьера толщиной 1-1.2 нм и пленки верхнего электрода нормального металла или сверхпроводника, в итоге получают трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН) или СИС,

3) взрывают резист с удалением трехслойной структуры вне области нижнего электрода (Фиг. 1В),

4) наносят резист и проводят экспозицию с освещением через обратную сторону прозрачной подложки (либо засветку негативного резиста со стороны резиста),

5) проявляют резист, который остается в областях, покрытых пленками, и отсутствует в промежутках,

6) проводят напыление изолятора (4) толщиной, равной толщине трехслойной структуры, для планаризации поверхности между пленками,

7) взрывают резист с удалением изолятора из областей поверх металлических пленок (Фиг. 1С),

8) проводят последний этап литографии с напылением резистивного мостика (5) между туннельными СИН переходами (Фиг. 1D). Толщина этой пленки нормального металла может быть существенно тоньше предыдущих слоев, менее 10 нм.

Новым, по сравнению с прототипом, является этап планаризации после травления трехслойной пленочной СИН структуры, с использованием самосовмещенной фотомаски, что позволяет снизить толщину верхнего электрода СИН структуры менее толщины нижнего электрода, появляется возможность формирования перемычки между двумя СИН переходами из произвольного металла и произвольной толщины, что необходимо для оптимизации параметров болометров, электронных охладителей, смесителей.

Физический механизм достижения целей изобретения заключается в применении планаризации рельефа поверхности после нанесения трехслойной структуры, применении оптической литографии вместо электронной и магнетронного распыления вместо термического напыления. В способе-прототипе туннельные переходы требуют дополнительной анодизации для формирования окисла на торцах, имеют большую паразитную емкость подводящих проводников, не позволяют существенно уменьшать толщину верхней пленки абсорбера, а в предлагаемом способе за счет выбора материалов сверхпроводника и нормального металла и применения планаризации пленкой диэлектрика удается избавиться от необходимости анодизации, уменьшить паразитную емкость верхнего электрода, сократить объем абсорбера за счет уменьшения толщины пленки верхнего электрода. Перемычка между туннельными переходами может быть выполнена из другого материала, отличающегося от верхнего электрода трехслойной структуры. Для исключения операции травления трехслойной структуры в качестве второго варианта, вместо прямой литографии после нанесения трехслойной структуры, проводят обратную литографию с нанесением резиста, его экспозицией и проявлением до нанесения трехслойной структуры (п. 4 формулы изобретения). Затем проводят обратную литографию (взрыв резиста), после чего наносят новый слой резиста, экспонируют через обратную сторону прозрачной подложки, либо со стороны резиста, проявляют и наносят слой диэлектрика для планаризации.

У авторов изобретения имеется положительный опыт изготовления описанных структур по п. 1 формулы изобретения. Были изготовлены СИНИС структуры с нижним алюминиевым электродом толщиной 50 нм, туннельным барьером толщиной 1-2 нм и верхним палладиевым электродом толщиной 10 нм. Особенностью технологии является применение специфического фоторезиста SU8, для которого используется бесщелочной проявитель, что позволяет избежать паразитного химического травления нижнего алюминиевого электрода в процессе проявления фоторезиста. У авторов имеется успешный опыт изготовления переходов с барьером Шоттки, который формируется на основе окисла титана в переходах титан - оксид титана - алюминий. У авторов имеется успешный опыт изготовления андреевских контактов по приведенной технологии в случае применения трехслойной САН структуры палладий - андреевский контакт - алюминий.

Технический результат предлагаемого решения состоит в достижении поставленных целей: повышении воспроизводимости, снижении трудоемкости и времени изготовления структур, увеличении площади туннельных переходов более 1 мкм2 при снижении толщины верхнего электрода и перемычки абсорбера менее толщины нижнего электрода, снятии ограничения на форму переходов, устранении паразитных теней, устранении паразитных шунтирующих емкостей и сопротивлений утечки, уменьшении количества технологических ступеней литографии.

Литература

1. Лапир Г.М., Комаровских Н.И., Электронная промышленность, №6, 64, 1973.

2. G.J. Dolan, Offset masks for lift-off photoprocessing, Appl. Phys. Lett. 31, 337-339 (1977).

3. W. Rothmund, H. Downar, P. Meisterjahn, et al., NbN-MgO-NbN Josephson junctions prepared by window isolation process, IEEE Trans. Appl. Supercond., v. 3, N 1, pp. 2208-2210 (1993).

4. L.S. Kuzmin, Yu.V. Nazarov, D.B. Haviland, P. Delsing and T. Claeson. "Coulomb Blocade and Incoherent Tunneling of Cooper Pair in Ultra-Small Junctions Affected by strong Quantum Fluctuations", Phys. Rev. Lett. Vol. 67, 1161 (1991).

5. M. Naum, Т.M. Eiles, and J. Martinis. Electron Microrefrigeration Based on a Normal Metal-Insulator-Superconductor Tunnel Junction.

6. L. Kuzmin D. Golubev, Appl. Phys. Lett.

7. United States Patent 6365912, Superconducting tunnel junction device, Booth, Norman Ewart (Oxford, GB), Ullom, Joel Nathan (Cambridge, MA), Nahum, Michael (Cambridge, MA)

8. United States Patent 6,593,065, Method of fabricating nanometer-scale flow channels and trenches with self-aligned electrodes and the structures formed by the same, Scherer, July 15, 2003.


СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВ С ТОНКОПЛЕНОЧНЫМИ СВЕРХПРОВОДНИКОВЫМИ ПЕРЕХОДАМИ
СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВ С ТОНКОПЛЕНОЧНЫМИ СВЕРХПРОВОДНИКОВЫМИ ПЕРЕХОДАМИ
Источник поступления информации: Роспатент

Showing 71-80 of 92 items.
21.08.2019
№219.017.c1be

Функциональный элемент магноники

Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот. Функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ),...
Тип: Изобретение
Номер охранного документа: 0002697724
Дата охранного документа: 19.08.2019
02.10.2019
№219.017.cf06

Устройство и способ измерения спектральных характеристик волоконно-оптических брэгговских решеток

Группа изобретений относится к волоконной оптике. Устройство измерения спектральных характеристик волоконно-оптических брэгговских решеток включает полупроводниковый лазер со встроенным элементом нагрева-охлаждения. К управляющим выходам блока контроля и управления подключены входы устройства...
Тип: Изобретение
Номер охранного документа: 0002700736
Дата охранного документа: 19.09.2019
09.10.2019
№219.017.d3b3

Приемное устройство для радиосвязи с подводным объектом

Устройство относится к радиотехнике и предназначено для приема радиоволн сверхнизких и крайне низких частот (СНЧ и КНЧ) в морской среде при радиосвязи с движущимся подводным объектом. Технический результат состоит в улучшении эксплуатационных характеристик за счет уменьшения длины кабельной...
Тип: Изобретение
Номер охранного документа: 0002702235
Дата охранного документа: 07.10.2019
17.10.2019
№219.017.d660

Функциональный компонент магноники на многослойной ферромагнитной структуре

Использование: для конструирования приборов на магнитостатических волнах. Сущность изобретения заключается в том, что функциональный компонент магноники содержит подложку из немагнитного диэлектрика, ферромагнитные слои железоиттриевого граната (ЖИГ), микрополосковые преобразователи для...
Тип: Изобретение
Номер охранного документа: 0002702915
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d66d

Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности

Использование: для пространственного разделения СВЧ-сигналов разного уровня мощности. Сущность изобретения заключается в том, что устройство на магнитостатических волнах включает микроволноводную структуру, содержащую слой железо-иттриевого граната (ЖИГ) на подложке из галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002702916
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d6be

Способ обнаружения скрытых предметов на терагерцевых изображениях тела человека

Способ обнаружения скрытых предметов на теле человека включает регистрацию собственного теплового излучения (ТИ) человека в терагерцевом диапазоне электромагнитных волн с последующей цифровой обработкой анализируемого ТИ-изображения. Формируют набор эталонов, каждый из которых включает в себя:...
Тип: Изобретение
Номер охранного документа: 0002702913
Дата охранного документа: 14.10.2019
21.11.2019
№219.017.e44b

Управляемый многоканальный фильтр свч-сигнала на основе магнонного кристалла

Изобретение относится к радиотехнике, в частности к фильтрам. Многоканальный фильтр СВЧ-сигнала содержит размещенную на подложке ферромагнитную пленочную структуру, сопряженную с входным и выходными преобразователями поверхностных магнитостатических волн (ПМСВ), источники управляющего внешнего...
Тип: Изобретение
Номер охранного документа: 0002706441
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e7b3

Реконфигурируемый мультиплексор ввода-вывода на основе кольцевого резонатора

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах. Технический результат заключается в создании мультиплексора ввода-вывода с возможностью управления режимами работы устройства за счет изменения конфигурации распределения внутреннего магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002707391
Дата охранного документа: 26.11.2019
01.12.2019
№219.017.e841

Управляемый электрическим полем делитель мощности на магнитостатических волнах с функцией фильтрации

Изобретение относится к радиотехнике, в частности к делителям сигналов. Делитель мощности СВЧ сигнала на магнитостатических волнах содержит размещенную на подложке микроволноводную структуру на основе пленки железо-иттриевого граната (ЖИГ), входной и два выходных порта, связанных с...
Тип: Изобретение
Номер охранного документа: 0002707756
Дата охранного документа: 29.11.2019
04.02.2020
№220.017.fd2f

Акустический мультиканальный анализатор микропроб жидких сред

Использование: для анализа жидких сред, в том числе биологических жидкостей. Сущность изобретения заключается в том, что анализатор содержит пьезоэлектрическую пластину, в центральной части которой расположен излучающий ВШП. По обе стороны пластины по направлению излучения с зазором размещены...
Тип: Изобретение
Номер охранного документа: 0002712723
Дата охранного документа: 31.01.2020
Showing 51-57 of 57 items.
19.04.2019
№219.017.33d3

Низкотемпературный перестраиваемый источник излучения черного тела

Изобретение относится к области измерительной техники, а именно к фоточувствительным приборам, предназначенным для обнаружения теплового излучения, и охлаждаемым приемникам ИК-излучения. Низкотемпературный перестраиваемый источник излучения черного тела содержит излучатель черного тела,...
Тип: Изобретение
Номер охранного документа: 0002469280
Дата охранного документа: 10.12.2012
09.06.2019
№219.017.7f47

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к изготовлению сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник (СИС), структур сверхпроводник-изолятор-нормальный металл (СИН), болометров на...
Тип: Изобретение
Номер охранного документа: 0002442246
Дата охранного документа: 10.02.2012
29.06.2019
№219.017.9d03

Сверхпроводниковый быстродействующий ключ

Изобретение относится к области высокочастотной техники, в частности к устройствам для коммутации сигналов сантиметрового, миллиметрового и субмиллиметрового диапазонов. Техническим результатом изобретения является: повышение рабочей частоты сигнала модулятора до единиц гигагерц, увеличение...
Тип: Изобретение
Номер охранного документа: 0002381597
Дата охранного документа: 10.02.2010
12.04.2023
№223.018.466a

Способ изготовления устройств с тонкопленочными туннельными переходами

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами включает нанесение двух слоев резиста разной чувствительности, экспозицию в электронном литографе, проявление этих слоев резиста, напыление первого слоя нормального металла или сверхпроводника под углом к подложке,...
Тип: Изобретение
Номер охранного документа: 0002733330
Дата охранного документа: 01.10.2020
21.04.2023
№223.018.4f81

Джозефсоновский параметрический усилитель бегущей волны на основе би-сквидов

Изобретение относится к параметрическому усилителю бегущей волны. Технический результат - расширение свободного от паразитных составляющих динамического диапазона. Для этого параметрический усилитель бегущей волны содержит размещенные на подложке копланарный волновод и связанные с ним...
Тип: Изобретение
Номер охранного документа: 0002792981
Дата охранного документа: 28.03.2023
16.05.2023
№223.018.6066

Металл-диэлектрик-металл-диэлектрик-металл фотодетектор

Изобретение относится к детекторам излучения, полевым транзисторам, туннельным усилителям с потоком горячих электронов, МДМДМ туннельным структурам для приема излучения миллиметровых и субмиллиметровых волн. Металл-Диэлектрик-Металл-Диэлектрик-Металл детектор, содержащий металлический проводник...
Тип: Изобретение
Номер охранного документа: 0002749575
Дата охранного документа: 15.06.2021
29.05.2023
№223.018.7282

Перестраиваемый генератор шумового сигнала

Изобретение относится к области радиотехники и измерительной техники, а именно к приборам, предназначенным для измерения слабых сигналов и может быть использовано для калибровки чувствительности криогенных усилителей и детекторов гигагерцового диапазона. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002796347
Дата охранного документа: 22.05.2023
+ добавить свой РИД