×
10.08.2016
216.015.5348

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ

Вид РИД

Изобретение

№ охранного документа
0002594176
Дата охранного документа
10.08.2016
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания. Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт и влагосодержание W нефтепродукта определяют по формуле W=(ME-ε)/3ε, где М=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта. 1 ил.
Основные результаты: Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, отличающийся тем, что помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт, и влагосодержание нефтепродукта W определяют по формуле ,где M=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ определения влагосодержания нефтепродукта в диэлектрическом трубопроводе, включающий возбуждение электромагнитных колебаний в открытом резонаторе, образованном двумя четвертьсферическими отражателями, установленными диаметрально на наружной поверхности диэлектрического трубопровода. Согласно данному техническому решению (см. RU 2131600 С1, 10.06.1999) по преобразованию резонансной частоты открытого резонатора и ширины его резонансной кривой на уровне половины мощности определяют величину влагосодержания нефтепродукта.

Недостатком этого известного способа является сложность преобразования величины отношения резонансной частоты к ширине резонансной кривой на уровне половины мощности, приводящей к снижению точности определения влагосодержания.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения объемного влагосодержания обводненного нефтепродукта, заполняющего металлический сосуд (см. RU 2279666 С1, 10.07.2006). В этом способе при воздействии на обводненный нефтепродукт электромагнитными волнами, путем произведения высоты слоя воды при ее расслоении в металлическом сосуде, измеренной амплитудой прошедшей через нефтепродукт волны, и внутренней площади основания сосуда, занимаемой этим слоем воды в сосуде, определяют объемное влагосодержание нефтепродукта в металлическом сосуде.

Недостатком этого способа можно считать погрешность, связанную с неточностью измерения внутренней площади основания сосуда.

Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания.

Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт и влагосодержание W нефтепродукта определяют по формуле

W=(ME4н)/3εн,

где М=(υ1λB)2/(υ12); υ1 и υ2 - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, εн - диэлектрическая проницаемость нефтепродукта.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение скоростей распространения двух ортогонально поляризованных волн при искусственной анизотропии в контролируемой среде дает возможность определить малое влагосодержание нефтепродукта в диэлектрическом сосуде. Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения малого влагосодержания нефтепродукта в диэлектрическом сосуде на основе измерения скоростей распространения двух ортогонально поляризованных волн при искусственной анизотропии в контролируемой среде с желаемым техническим результатом, т.е. повышением точности измерения малого влагосодержания.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, первый элемент приема поляризованной волны 2, второй элемент приема поляризованной волны 3, 4 и 5 электроды, первый измеритель скорости поляризованной волны 6, второй измеритель скорости поляризованной волны 7, вычислитель влагосодержания 8. На фигуре цифрой 9 обозначен диэлектрический сосуд.

Предлагаемый способ работает следующим образом. Предварительно диэлектрический сосуд (прозрачный) с обводненным нефтепродуктом помещают в электрическое поле, образованное двумя электродами. В результате обводненный нефтепродукт с малым содержанием воды может стать анизотропным веществом. После этого если прозондировать данное искусственно анизотропное вещество электромагнитными волнами (зондирующие волны направляются параллельно силовым линиям приложенного электрического поля), то при взаимодействии этих волн с этим веществом, в последнем, возникнут ортогонально поляризованные волны, распространяющиеся параллельно и перпендикулярно силовым линиям приложенного к нефтепродукту электрического поля. При этом из-за разности преломления волн в данном веществе, поляризованная волна, распространяющаяся параллельно силовым линиям электрического поля, будет иметь одну скорость распространения, а поляризованная волна, распространяющаяся перпендикулярно силовым линиям электрического поля, - другую скорость. В данном случае из-за искусственно анизотропии в веществе, скорость распространения поляризованной волны, распространяющейся параллельно силовым линиям приложенного к веществу электрического поля, будет опережать скорость распространения поляризованной волны, распространяющейся перпендикулярно силовым линиям электрического поля. В силу этого для скорости распространения поляризованной волны, направленной параллельно силовым линиям электрического поля, можно записать

где υпар - скорость поляризованной волны, направленной параллельно силовым линиям электрического поля, n - показатель преломления вещества в отсутствии анизотропии, Δn - показатель преломления волны (наличие анизотропии в веществе), поляризованной параллельно силовым линиям зондирующей волны, с - скорость света в вакууме. Для скорости распространения поляризованной волны, направленной перпендикулярно силовым линиям приложенного электрического поля можно принимать

где υпер - скорость поляризованной волны, направленной перпендикулярно силовым линиям электрического поля.

В рассматриваемом случае формулу (1) ввиду того, что показатель преломления Δn может изменяться на величину λВЕ2 (воздействие приложенного к диэлектрическому сосуду электрического поля), можно переписать как

Совместное преобразование выражений (1) и (3) дает возможность записать, что

Известно, что показатель преломления n можно вычислить как

где ε - диэлектрическая проницаемость вещества, µ - магнитная проницаемость вещества. При условии µ=1, формулу (4) с учетом последнего выражения можно переписать как

Обозначим М=(υпарλВ)2/(υпарпер)2. Тогда для s получаем

ε=ME4.

Известно, что при малых значениях влагосодержания в нефтепродукте (см. Теория и практика экспрессного контроля влажности твердых и жидких материалов / под ред. Е.С. Кричевского. М.: Энергия, 1980, 240 с.), для зависимости между диэлектрической проницаемостью водоэмульсионной смеси и влагосодержанием в ней с учетом диэлектрической проницаемостью нефтепродукта, можно записать

где εсм - диэлектрическая проницаемость водоэмульсионной смеси.

В данном случае с определенной точностью принимается, что в формулу (5) вместо 8 можно положить εсм из формулы (6). Тогда совместное преобразование выражений (5) и (6) дает возможность вычислить влагосодержание следующим образом:

Из последнего выражения видно, что при постоянных значениях Е, В, X и εн измерением скоростей υпар и υпер можно определить малое влагосодержание в нефтепродукте.

Устройство, реализующее предлагаемое техническое решение, работает следующим образом. Диэлектрический сосуд 9 с обводненным нефтепродуктом помещают в электрическое поле, образованное электродами 4 и 5. С выхода генератора электромагнитных колебаний 1 направляют электромагнитную волну в обводненный нефтепродукт так, чтобы направление распространения волны было параллельным силовым линям приложенного к веществу электрического поля. После этого в силу поляризации электромагнитной волны в веществе из-за его искусственной анизотропии принимают две ортогонально поляризованные волны. При этом первым элементом приема 2 принимают поляризованную волну, распространяющуюся параллельно силовым линиям электрического поля, а вторым элементом приема 3 - поляризованную волну, распространяющуюся перпендикулярно силовым линиям электрического поля. Далее с выходов первого и второго элементов приема сигналы направляют соответственно на входы первого и второго измерителей скоростей 6 и 7. Далее выходные сигналы этих измерителей скоростей, соответствующие значениям скоростей распространения через обводненный нефтепродукт ортогонально двух поляризованных волн, поступают на первый и второй входы вычислителя влагосодержания 8. Здесь после их преобразования согласно алгоритму (7) можно определить малое влагосодержание в нефтепродукте в диэлектрическом сосуде.

Перед измерением, для получения достоверной информации о влагосодержании в нефтепродукте, диэлектрический сосуд с обводненным нефтепродуктом целесообразно взбалтывать.

Таким образом, в предлагаемом техническом решении, на основе измерения скоростей распространения через искусственно анизотропный диэлектрический сосуд с обводненным нефтепродуктом двух ортогонально поляризованных волн, можно обеспечить повышение точности измерения малого влагосодержания.

Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, отличающийся тем, что помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт, и влагосодержание нефтепродукта W определяют по формуле ,где M=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта.
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
Источник поступления информации: Роспатент

Showing 271-280 of 282 items.
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
27.05.2023
№223.018.70ec

Устройство установки датчиков для контроля параметров в помещении для содержания сельскохозяйственных животных

Изобретение относится к сельскому хозяйству, а именно к технологиям содержания животных, и может быть применено в конструкции устройств контроля за параметрами микроклимата на фермах. Устройство содержит размещенную в помещении пространственную ферменную конструкцию, образованную...
Тип: Изобретение
Номер охранного документа: 0002776203
Дата охранного документа: 14.07.2022
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
03.06.2023
№223.018.76af

Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу

Изобретение относится к области приборостроения, в частности к способам измерения расхода потоков веществ. Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу, заключается в том, что поток контролируемой среды нагревают микроволновым излучением. Сначала...
Тип: Изобретение
Номер охранного документа: 0002748325
Дата охранного документа: 24.05.2021
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
Showing 191-191 of 191 items.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД