×
10.08.2016
216.015.5348

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ

Вид РИД

Изобретение

№ охранного документа
0002594176
Дата охранного документа
10.08.2016
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания. Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт и влагосодержание W нефтепродукта определяют по формуле W=(ME-ε)/3ε, где М=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта. 1 ил.
Основные результаты: Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, отличающийся тем, что помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт, и влагосодержание нефтепродукта W определяют по формуле ,где M=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ определения влагосодержания нефтепродукта в диэлектрическом трубопроводе, включающий возбуждение электромагнитных колебаний в открытом резонаторе, образованном двумя четвертьсферическими отражателями, установленными диаметрально на наружной поверхности диэлектрического трубопровода. Согласно данному техническому решению (см. RU 2131600 С1, 10.06.1999) по преобразованию резонансной частоты открытого резонатора и ширины его резонансной кривой на уровне половины мощности определяют величину влагосодержания нефтепродукта.

Недостатком этого известного способа является сложность преобразования величины отношения резонансной частоты к ширине резонансной кривой на уровне половины мощности, приводящей к снижению точности определения влагосодержания.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения объемного влагосодержания обводненного нефтепродукта, заполняющего металлический сосуд (см. RU 2279666 С1, 10.07.2006). В этом способе при воздействии на обводненный нефтепродукт электромагнитными волнами, путем произведения высоты слоя воды при ее расслоении в металлическом сосуде, измеренной амплитудой прошедшей через нефтепродукт волны, и внутренней площади основания сосуда, занимаемой этим слоем воды в сосуде, определяют объемное влагосодержание нефтепродукта в металлическом сосуде.

Недостатком этого способа можно считать погрешность, связанную с неточностью измерения внутренней площади основания сосуда.

Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания.

Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт и влагосодержание W нефтепродукта определяют по формуле

W=(ME4н)/3εн,

где М=(υ1λB)2/(υ12); υ1 и υ2 - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, εн - диэлектрическая проницаемость нефтепродукта.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение скоростей распространения двух ортогонально поляризованных волн при искусственной анизотропии в контролируемой среде дает возможность определить малое влагосодержание нефтепродукта в диэлектрическом сосуде. Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения малого влагосодержания нефтепродукта в диэлектрическом сосуде на основе измерения скоростей распространения двух ортогонально поляризованных волн при искусственной анизотропии в контролируемой среде с желаемым техническим результатом, т.е. повышением точности измерения малого влагосодержания.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, первый элемент приема поляризованной волны 2, второй элемент приема поляризованной волны 3, 4 и 5 электроды, первый измеритель скорости поляризованной волны 6, второй измеритель скорости поляризованной волны 7, вычислитель влагосодержания 8. На фигуре цифрой 9 обозначен диэлектрический сосуд.

Предлагаемый способ работает следующим образом. Предварительно диэлектрический сосуд (прозрачный) с обводненным нефтепродуктом помещают в электрическое поле, образованное двумя электродами. В результате обводненный нефтепродукт с малым содержанием воды может стать анизотропным веществом. После этого если прозондировать данное искусственно анизотропное вещество электромагнитными волнами (зондирующие волны направляются параллельно силовым линиям приложенного электрического поля), то при взаимодействии этих волн с этим веществом, в последнем, возникнут ортогонально поляризованные волны, распространяющиеся параллельно и перпендикулярно силовым линиям приложенного к нефтепродукту электрического поля. При этом из-за разности преломления волн в данном веществе, поляризованная волна, распространяющаяся параллельно силовым линиям электрического поля, будет иметь одну скорость распространения, а поляризованная волна, распространяющаяся перпендикулярно силовым линиям электрического поля, - другую скорость. В данном случае из-за искусственно анизотропии в веществе, скорость распространения поляризованной волны, распространяющейся параллельно силовым линиям приложенного к веществу электрического поля, будет опережать скорость распространения поляризованной волны, распространяющейся перпендикулярно силовым линиям электрического поля. В силу этого для скорости распространения поляризованной волны, направленной параллельно силовым линиям электрического поля, можно записать

где υпар - скорость поляризованной волны, направленной параллельно силовым линиям электрического поля, n - показатель преломления вещества в отсутствии анизотропии, Δn - показатель преломления волны (наличие анизотропии в веществе), поляризованной параллельно силовым линиям зондирующей волны, с - скорость света в вакууме. Для скорости распространения поляризованной волны, направленной перпендикулярно силовым линиям приложенного электрического поля можно принимать

где υпер - скорость поляризованной волны, направленной перпендикулярно силовым линиям электрического поля.

В рассматриваемом случае формулу (1) ввиду того, что показатель преломления Δn может изменяться на величину λВЕ2 (воздействие приложенного к диэлектрическому сосуду электрического поля), можно переписать как

Совместное преобразование выражений (1) и (3) дает возможность записать, что

Известно, что показатель преломления n можно вычислить как

где ε - диэлектрическая проницаемость вещества, µ - магнитная проницаемость вещества. При условии µ=1, формулу (4) с учетом последнего выражения можно переписать как

Обозначим М=(υпарλВ)2/(υпарпер)2. Тогда для s получаем

ε=ME4.

Известно, что при малых значениях влагосодержания в нефтепродукте (см. Теория и практика экспрессного контроля влажности твердых и жидких материалов / под ред. Е.С. Кричевского. М.: Энергия, 1980, 240 с.), для зависимости между диэлектрической проницаемостью водоэмульсионной смеси и влагосодержанием в ней с учетом диэлектрической проницаемостью нефтепродукта, можно записать

где εсм - диэлектрическая проницаемость водоэмульсионной смеси.

В данном случае с определенной точностью принимается, что в формулу (5) вместо 8 можно положить εсм из формулы (6). Тогда совместное преобразование выражений (5) и (6) дает возможность вычислить влагосодержание следующим образом:

Из последнего выражения видно, что при постоянных значениях Е, В, X и εн измерением скоростей υпар и υпер можно определить малое влагосодержание в нефтепродукте.

Устройство, реализующее предлагаемое техническое решение, работает следующим образом. Диэлектрический сосуд 9 с обводненным нефтепродуктом помещают в электрическое поле, образованное электродами 4 и 5. С выхода генератора электромагнитных колебаний 1 направляют электромагнитную волну в обводненный нефтепродукт так, чтобы направление распространения волны было параллельным силовым линям приложенного к веществу электрического поля. После этого в силу поляризации электромагнитной волны в веществе из-за его искусственной анизотропии принимают две ортогонально поляризованные волны. При этом первым элементом приема 2 принимают поляризованную волну, распространяющуюся параллельно силовым линиям электрического поля, а вторым элементом приема 3 - поляризованную волну, распространяющуюся перпендикулярно силовым линиям электрического поля. Далее с выходов первого и второго элементов приема сигналы направляют соответственно на входы первого и второго измерителей скоростей 6 и 7. Далее выходные сигналы этих измерителей скоростей, соответствующие значениям скоростей распространения через обводненный нефтепродукт ортогонально двух поляризованных волн, поступают на первый и второй входы вычислителя влагосодержания 8. Здесь после их преобразования согласно алгоритму (7) можно определить малое влагосодержание в нефтепродукте в диэлектрическом сосуде.

Перед измерением, для получения достоверной информации о влагосодержании в нефтепродукте, диэлектрический сосуд с обводненным нефтепродуктом целесообразно взбалтывать.

Таким образом, в предлагаемом техническом решении, на основе измерения скоростей распространения через искусственно анизотропный диэлектрический сосуд с обводненным нефтепродуктом двух ортогонально поляризованных волн, можно обеспечить повышение точности измерения малого влагосодержания.

Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде, при котором зондируют нефтепродукт электромагнитными волнами, отличающийся тем, что помещают диэлектрический сосуд с нефтепродуктом в электрическое поле, принимают пару ортогонально поляризованных волн, вычисляют скорости их распространения через нефтепродукт, и влагосодержание нефтепродукта W определяют по формуле ,где M=(υλB)/(υ-υ); υ и υ - скорости распространения электромагнитных волн, поляризованных параллельно и перпендикулярно силовым линиям зондирующей волны соответственно, λ - длина электромагнитной волны, В - коэффициент, зависящий от свойства контролируемой среды, Е - напряженность электрического поля, ε - диэлектрическая проницаемость нефтепродукта.
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОГО ВЛАГОСОДЕРЖАНИЯ НЕФТЕПРОДУКТА В ДИЭЛЕКТРИЧЕСКОМ СОСУДЕ
Источник поступления информации: Роспатент

Showing 221-230 of 282 items.
27.10.2018
№218.016.973d

Способ измерения расхода текучей среды

Изобретение относится к измерительной технике и может быть использовано для контроля расхода различных газов и жидкостей. Способ измерения расхода заключается в том, что поток пропускают последовательно через вращающийся его напором привод с дроссельным регулированием в байпасе и через...
Тип: Изобретение
Номер охранного документа: 0002670705
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.97b6

Способ автоматического полива растительных плантаций

Изобретение относится к области полива растений в закрытом грунте и может быть использовано для полива комнатных растений. При осуществлении способа автоматического полива предварительно накапливают воду в емкости. Устанавливают горшок с растением на плечо рычага. На другом плече рычага...
Тип: Изобретение
Номер охранного документа: 0002671109
Дата охранного документа: 29.10.2018
04.11.2018
№218.016.9a49

Способ управления обновлениями программного обеспечения в системах с каскадной структурой

Изобретение относится к области вычислительной техники. Техническим результатом является возможность управления обновлениями программного обеспечения в системах с каскадной структурой. Раскрыт способ управления обновлениями программного обеспечения в системах с каскадной структурой, включающий...
Тип: Изобретение
Номер охранного документа: 0002671624
Дата охранного документа: 02.11.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9b62

Измеритель воздушной скорости

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред. Измеритель воздушной скорости содержит проточный корпус с расположенной, перпендикулярно потоку, внутри пластиной, на которой размещены по ее разные стороны в потоке струйные...
Тип: Изобретение
Номер охранного документа: 0002672037
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9bf5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002671936
Дата охранного документа: 07.11.2018
03.03.2019
№219.016.d238

Способ определения расходной характеристики гидравлического тракта при турбулентном режиме истечения

Изобретение относится к способам и устройствам, используемым для расчета пропускной способности проектируемых гидравлических трактов транспортных и дозирующих систем в химической, нефтехимической, авиационной, текстильной, лакокрасочной и других отраслях промышленности, в частности узлов...
Тип: Изобретение
Номер охранного документа: 0002680987
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d248

Цифровой измеритель электрического тока

Предлагаемое изобретение относится к области информационно-измерительной техники. Сущность заявленного решения заключается в том, что в цифровой измеритель электрического тока, содержащий первичный преобразователь в виде неподвижной катушки и подвижной катушки, расположенной на оси, регистратор...
Тип: Изобретение
Номер охранного документа: 0002680988
Дата охранного документа: 01.03.2019
30.03.2019
№219.016.f979

Способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости транспортного средства -...
Тип: Изобретение
Номер охранного документа: 0002683578
Дата охранного документа: 29.03.2019
11.04.2019
№219.017.0b37

Способ определения напряженности магнитного поля

Изобретение относится к области информационно-измерительной техники. Способ определения напряженности магнитного поля, при котором помещают в магнитное поле микроволновый резонатор и возбуждают в резонаторе электромагнитные колебания, резонатор выполняют из ферримагнитного материала, измеряют...
Тип: Изобретение
Номер охранного документа: 0002684446
Дата охранного документа: 09.04.2019
Showing 191-191 of 191 items.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД