×
27.08.2016
216.015.4fe8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ШЕСТИЭЛЕКТРОДНОЙ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротермии и может быть использовано для контроля электрических параметров, характеризующих состояние подэлектродных объемов ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию. Техническим результатом заявляемого изобретения является расширение возможностей определения разностно-потенциальных коэффициентов ванны. Этот результат достигается тем, что в заявляемом способе определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов, к электрической цепи печи подключают два фильтра, прозрачные для тока измерительной частоты и непрозрачные для тока рабочей частоты, выводы каждого из которых присоединяют к соседним электродам, принадлежащим разным фазам печных трансформаторов, последовательно к каждому электроду подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, для каждой из трех комбинаций, состоящей из двух электродов «электрод - электрод, расположенный через два электрода», оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуды и фазы ЭДС источников измеряющей частоты остальных электродов так, чтобы действующее значения токов измеряющей частоты в них стали равными нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод - подина» выбранной комбинации на измеряющей частоте, и вычисляют собственные разностно-потенциальные коэффициенты схемы замещения ванны в соответствии с выражениями где I, I, I, P, P, P, P, P, P - величины токов в первичной цепи источника питания измеряющей частоты электродов в комбинациях пар «электрод - электрод, расположенный через два электрода» и активные мощности, выделяющиеся на участках «электрод - подина» соответствующих комбинаций электродов; w- количество витков первичной обмотки вводного устройства. 1 табл., 3 ил.
Основные результаты: Способ определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов, в соответствии с которым последовательно к каждому из электродов подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, изменяют ЭДС и фазы источников питания измеряющей частоты, измеряют токи и активные мощности на измеряющей частоте и определяют электрические параметры подэлектродных пространств, в качестве которых приняты собственные разностно-потенциальные коэффициенты участков ванны «электрод - подина», отличающийся тем, что к электрической цепи печи подключают два фильтра, прозрачные для тока измерительной частоты и непрозрачные для тока рабочей частоты, выводы каждого из которых присоединяют к соседним электродам, принадлежащим разным фазам печных трансформаторов, для каждой из трех комбинаций, состоящей из двух электродов «электрод - электрод, расположенный через два электрода» оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуды и фазы ЭДС источников измеряющей частоты остальных электродов так, чтобы действующие значения токов измеряющей частоты в них стали равными нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод - подина» выбранной комбинации на измеряющей частоте, и вычисляют собственные разностно-потенциальные коэффициенты схемы замещения ванны в соответствии с выражениями где I, I, I, P, P, P, P, P, P - величины токов в первичной цепи источника питания измеряющей частоты в комбинациях пар «электрод - электрод, расположенный через два электрода» и активные мощности, выделяющиеся на участках «электрод - подина» соответствующих комбинаций электродов; w - количество витков первичной обмотки вводного устройства.

Изобретение относится к электротермии и может быть использовано для контроля электрических параметров, характеризующих состояние подэлектродных объемов ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов.

Известен способ определения электрических параметров ванны рудно-термической электрической печи, при котором изменяют межэлектродные напряжения так, что одно из напряжений участка «электрод - подина» остается неизменным, и по изменениям токов электродов вычисляют проводимость межэлектродного пространства [1].

Недостатком известного способа является то, что при его осуществлении, хотя и кратковременно, нарушается нормальный режим работы печи.

Также известны способы для непрерывного контроля электрических параметров ванны, таких как проводимость подэлектродного пространства ванны трехфазной рудно-термической печи, сопротивление между электродом и подиной трехфазной рудно-термической печи, разностно-потенциальные коэффициенты схемы замещения ванны, не нарушающие нормальный режим работы печи. Эти способы предполагают использование измерительных источников с частотой тока, отличной от частоты тока силового источника питания [2, 3, 4, 5].

Наиболее близким к заявляемому способу является способ определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной рудно-термической печи, в качестве которого используется собственный разностно-потенциальный коэффициент (РПК) схемы замещения ванны, в соответствии с которым последовательно к каждому электроду подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, оставляют неизменными амплитуды и фазу ЭДС источника питания измеряющей частоты электрода, для которого определяют собственный РПК ванны, изменяют амплитуды и фазы ЭДС источников измеряющей частоты двух других электродов так, чтобы сумма действующих значений токов измеряющей частоты в них была равна нулю, измеряют ток, активную мощность, выделяющуюся на участке «электрод - подина» на измеряющей частоте этого электрода, и вычисляют собственный РПК участка ванны «электрод - подина».

Недостатками известного способа является невозможность его осуществления в трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов, из-за отсутствия нулевой точки, объединяющей вторичные обмотки печных трансформаторов.

Техническим результатом заявляемого изобретения является расширение возможностей определения разностно-потенциальных коэффициентов ванны, характеризующих состояние подэлектродных пространств ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов.

Этот результат достигается тем, что в заявляемом способе определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов, к электрической цепи печи подключают два фильтра, прозрачные для тока измерительной частоты и непрозрачные для тока рабочей частоты, выводы каждого из которых присоединяют к соседним электродам, принадлежащим разным фазам печных трансформаторов, последовательно к каждому электроду подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, для каждой из трех комбинаций, состоящей из двух электродов «электрод - электрод, расположенный через два электрода», оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуды и фазы ЭДС источников измеряющей частоты остальных электродов так, чтобы действующее значения токов измеряющей частоты в них стали равными нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод - подина» выбранной комбинации на измеряющей частоте, и вычисляют собственные разностно-потенциальные коэффициенты схемы замещения ванны в соответствии с выражениями

где I, I, I, P, Р, Р, Р, P, Р - величины токов в первичной цепи источника питания измеряющей частоты электродов в комбинациях пар «электрод - электрод, расположенный через два электрода» и активные мощности, выделяющиеся на участках «электрод - подина» соответствующих комбинаций электродов; wт - количество витков первичной обмотки вводного устройства.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов, отличается от известного тем, что:

1) в управляемых источниках питания измерительной частоты, в которых оставляют неизменными амплитуды и фазы ЭДС, фазы их ЭДС отличаются друг от друга на 180 электрических градусов;

2) требуется установление равенства нулю действующих значений тока измерительной частоты в четырех электродах, не входящих в комбинацию электродов, осуществляемое итерационным процессом последовательного изменения амплитуд и фаз ЭДС управляемых источников питания измерительной частоты электродов;

3) используются два фильтра, прозрачные для тока измерительной частоты и непрозрачные для тока рабочей частоты, выводы каждого из которых присоединяют к соседним электродам, принадлежащим разным фазам печных трансформаторов.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». При изучении данной и смежной области техники признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях и, следовательно, обеспечивают заявленному техническому решению соответствие критерию «изобретательский уровень».

РПК как параметры схемы замещения ванны РТП резистивного нагрева предложены в [6]. Согласно принципу суперпозиции, справедливому для линейных систем, напряжение на участке ванны «электрод - подина» можно представить алгебраической суммой частичных напряжений, каждое из которых обусловлено действием тока, протекающего в одном из электродов

где - напряжения на участках ванны «электрод - подина», - частичные напряжения на участках ванны «электрод - подина», - ток в j-м электроде; Ri,j - разностно-потенциальные коэффициенты схемы замещения.

Разностно-потенциальный коэффициент Ri,j определяет связь между частичным напряжениям на участке ванны «i-й электрод - подина» и током, протекающим в j-м электроде печи . РПК схемы замещения ванны зависят от ее формы, расположения и геометрических размеров электродов, формы их рабочих поверхностей, а также от электрической проводимости материалов среды ванны [6]. В зависимости от того, к каким электродам относятся частичное напряжение на участке ванны и ток электрода , различают собственные и взаимные РПК. Например, собственный РПК R1,1 ванны шестиэлектродной печи определяет связь между частичным напряжением участка ванны «первый электрод - подина», наводимым током первого электрода за счет его растекания по материалам среды ванны, и значением тока этого электрода. В свою очередь, взаимный РПК R1,2 устанавливает связь между частичным напряжением участка ванны «первый электрод - подина» и током, определяющим это частичное напряжение и протекающим во втором электроде. Для взаимных РПК схемы замещения ванны справедлив принцип взаимности Rij=Rij, i≠j [6].

Известно [7], что для расстояний между осями соседних электродов, характерных для действующих печей, собственный разностно-потенциальный коэффициент участка «электрод - подина» ванны для каждого электрода весьма слабо зависит от положения в ванне соседних электродов, что дает основание использовать его в качестве электрического параметра, характеризующего состояние пространства под электродом ванны. В частности, независимо от положения в ванне одного из электродов, например первого, при изменении заглубления в ванну других электродов значение собственного РПК для R1,1 участка ванны «первый электрод - подина» изменяется незначительно.

На фиг. 1a и 1б изображены полученные физическим и математическим моделированием зависимости относительных собственных РПК для «крайних» электродов R1,1=R1,1/Rэу1=R6,6=R6,6/Rэу6 (кривая 1), для «внутренних» электродов R2,2=R2,2/Rэу2=R3,3=R3,3/Rэу3=R4,4=R4,4/Rэу4=R5,5=R5,5/Rэу5 (кривая 2), взаимных РПК R1,2= R1,2/Rэу1=R2,3=R2,3/Rэу2=R3,4=R3,4/Rэу3=R4,5=R4,5/Rэу4=R5,6=R5,6/Rэу5 (кривая 3) и R1,3=R1,3/Rэу1=R2,4=R2,4/Rэу2=R2,4=R2,4/Rэу2=R2,4=R2,4/Rэу2 (кривая 4) схемы замещения ванны шестиэлектродной печи с расположением электродов в линию при одинаковом заглублении hэ всех электродов от относительного расстояния между осями соседних электродов S=S/l, где Rэуi - сопротивление ванны i-го электрода в предположении отсутствия в ванне остальных электродов, l - высота слабопроводящего слоя ванны. Анализ полученных зависимостей показывает, что взаимные РПК Ri, i+1, i=1, …, 5, примерно на порядок меньше собственных РПК Ri,i и Ri+1,i+1, а взаимные РПК Ri,i+2, 1, …, 4 - на два порядка. Чем более удалены электроды друг от друга, тем меньше значение взаимного РПК схемы замещения ванны для этих электродов. Это дает основание при исследовании электрического режима печи без значительной погрешности пренебречь влиянием взаимных РПК Ri,j схемы замещения ванны, для которых j>i+1 (i>j+1), и принять их значения равными нулю. При таком допущении для напряжений участков «электрод - подина» и токов измерительной частоты будут справедливы равенства

Допустим, что обеспечен электрический режим печи для первой комбинации электродов «первый электрод - четвертый электрод», при котором отсутствует ток измерительной частоты во втором, третьем, пятом и шестом электродах, т.е. I=I=I=I=0 (табл.). Тогда очевидно I=I и из (2) следуют соотношения

Если обеспечен электрический режим печи для второй комбинации (табл.), при которой отсутствует ток измерительной частоты в первом, третьем, четвертом и шестом электродах, т.е. I=I=I=I=0. Тогда очевидно I=I и из (2) следуют соотношения

Когда обеспечен электрический режим печи для третьей комбинации (табл.), при которой отсутствует ток измерительной частоты в первом, втором, четвертом и пятом электродах, т.е. I=I=I=I=0. Тогда очевидно I=I и из (2) следуют соотношения

На фиг. 2 изображена схема цепи силового питания печи, источников питания измеряющей частоты и измерения, в которой E1пит, Е2пит, Е3пит - ЭДС вторичных обмоток печных трансформаторов; Z1кс, Z2кс, Z3кс, Z4кс, Z4кс, Z5кс, Z6кс - сопротивления вторичных обмоток трансформаторов и короткой сети; R1,1, R2,2, R3,3, R4,4, R5,5, R6,6 - собственные разностно-потенциальные коэффициенты схемы замещения ванны; R1,2, R2,3, R3,4, R4,5, R5,6 - взаимные разностно-потенциальные коэффициенты схемы замещения ванны; Ф1, Ф2 - фильтры, прозрачные для тока измеряющей частоты и непрозрачные для тока рабочей частоты.

Ввод ЭДС источников питания измеряющей частоты можно осуществить, например, при помощи вводных устройств, по конструкции напоминающих трансформаторы тока, которые на фиг. 2 обозначены T1, Т2, Т3, Т4, Т5, Т6. Вторичными обмотками вводных устройств являются ветви короткой сети, охваченные магнитопроводами, на которых расположены первичные обмотки с большим числом витков.

Первичные цепи вводных устройств содержат фильтры Ф3, Ф4, Ф5, Ф6, Ф7, Ф8, прозрачные для тока рабочей частоты источника питания, фильтры Ф9, Ф10, Ф11, Ф12, Φ13, Φ14, прозрачные для токов измеряющей частоты, источники питания измеряющей частоты e1изм, е2изм, е3изм, е4изм, е5изм, е6изм с изменяемыми амплитудой и фазой ЭДС. В первичную цепь включены датчики действующего значения тока ДТ1, ДТ2, ДТ3, ДТ4, ДТ5, ДТ6, токовые обмотки ваттметров W1, W2, W3, W4, W5, W6. По величине тока первичной цепи вводного устройства судят о токе измеряющей частоты в электроде. Обмотки напряжения ваттметров W1, W2, W3, W4, W5, W6 последовательно соединены с прозрачными для тока измеряющей частоты фильтрами соответственно Ф15, Ф16, Ф17, Φ18, Φ19, Ф20 и подключены к электродам и подине ванны.

На фиг. 3а, 3б изображены возможные схемы фильтров, прозрачные для токов одной частоты и непрозрачные для токов другой частоты. Например, если схемы прозрачны для токов измерительной частоты и непрозрачны для токов рабочей частоты, то в каждой из них параллельный контур имеет резонансную настройку на частоте рабочего тока. Сопротивление параллельного контура имеет индуктивный характер для измеряющей частоты, если последняя ниже частоты питающего печь тока. Поэтому для пропускания токов измеряющей частоты последовательно с этим контуром включен конденсатор, емкостное сопротивление которого совместно с индуктивным сопротивлением контура обеспечивает резонанс напряжений на измеряющей частоте. Если же измеряющая частота больше рабочей частоты, то параллельный контур имеет емкостное сопротивление и последовательное включение с контуром катушки обеспечивает резонанс напряжений на измеряющей частоте.

Способ осуществляется следующим образом.

Пусть необходимо определить собственные разностно-потенциальные коэффициенты R1,1, I4,4 для первого и четвертого электродов схемы замещения ванны. Тогда амплитуды и фазы ЭДС источников измеряющей частоты е1изм и е4изм оставляют неизменными такими, что их фазы ЭДС отличаются друг от друга на 180 электрических градусов. Амплитуды и фазы ЭДС источников измеряющей частоты е2изм, е3изм, е5изм, е6изм изменяют так, чтобы действующие значения токов I, I, I, I измеряющей частоты в ветвях соответствующих электродов достигли значений, равных нулю. При этом условии действующие значения токов I и I будут равны, а собственные разностно-потенциальные коэффициенты ванны для крайних электродов определяются по выражениям (3).

При определении собственных РПК схемы замещения ванны R2,2, R5,5 для второго и пятого электродов амплитуды и фазы ЭДС источников измеряющей частоты е2изм и e5изм оставляют неизменными так, что их фазы ЭДС отличаются друг от друга на 180 электрических градусов. При этом амплитуды и фазы ЭДС источников измеряющей частоты е1изм, е3изм, е4изм, е6изм изменяют так, чтобы действующие значения токов I, I, I, I измеряющей частоты в ветвях соответствующих электродов достигли значений, равных нулю. Тогда действующие значения токов I и I будут равны, а собственный РПК схемы замещения ванны для второго и пятого электродов определяются по (4).

При определении собственных РПК схемы замещения ванны R3,3, R6,6 для третьего и шестого электродов амплитуды и фазы ЭДС источников измеряющей частоты е3изм и е6изм оставляют неизменными так, что их фазы ЭДС отличаются друг от друга на 180 электрических градусов. При этом амплитуды и фазы ЭДС источников измеряющей частоты е1изм, е3изм, е4изм, е5изм изменяют так, чтобы действующие значения токов I, I, I, I измеряющей частоты в ветвях соответствующих электродов достигли значений, равных нулю. Тогда действующие значения токов I и I будут равны, а собственные РПК схемы замещения ванны для второго и четвертого электродов определяются по (5).

Источники информации

1. А.С. СССР №436458, кл. H05В 7/144. Способ определения сопротивления межэлектродного пространства рабочей зоны трехфазной рудно-термической печи. 1972.

2. А.С. СССР №706943, кл. H05В 7/144. Фрыгин В.М. Способ определения проводимости подэлектродного объема трехфазной рудно-термической печи. Опубл. 31.12.79 в БИ №48, 1979.

3. А.С. СССР №955534, кл. H05В 7/144. Фрыгин В.М. Способ определения сопротивления между электродом и подиной трехфазной трехэлектродной рудно-термической печи. Опубл. 30.08.82 в БИ №32, 1982.

4. А.С. СССР №955535, кл. H05В 7/144. Фрыгин В.М. Способ определения проводимости между электродом и подиной трехфазной трехэлектродной рудно-термической печи. Опубл. 30.08.82 в БИ №32, 1982.

5. Патент РФ №2550739. Ильгачев А.Н., Абрамов А.В. Способ определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной печи. Опубл. 10.05.2015, Бюл. №13.

6. Ильгачев А.Н. Разностно-потенциальные коэффициенты ванн многоэлектродных печей резистивного нагрева. / А.Н. Ильгачев // Вестник Чувашского университета. 2006. №2. С.227-233.

7. Ильгачев А.Н. Исследование разностно-потенциальных коэффициентов ванн многоэлектродных печей резистивного нагрева. / А.Н. Ильгачев // Региональная энергетика и электротехника: проблемы и решения. Вып.7. Чебоксары. Изд-во Чуваш. ун-та. 2011. С. 196-209.

Способ определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной рудно-термической печи с шестью электродами, расположенными в линию, пары соседних из которых подключены с помощью токоподвода к вторичным обмоткам печных трансформаторов, в соответствии с которым последовательно к каждому из электродов подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, изменяют ЭДС и фазы источников питания измеряющей частоты, измеряют токи и активные мощности на измеряющей частоте и определяют электрические параметры подэлектродных пространств, в качестве которых приняты собственные разностно-потенциальные коэффициенты участков ванны «электрод - подина», отличающийся тем, что к электрической цепи печи подключают два фильтра, прозрачные для тока измерительной частоты и непрозрачные для тока рабочей частоты, выводы каждого из которых присоединяют к соседним электродам, принадлежащим разным фазам печных трансформаторов, для каждой из трех комбинаций, состоящей из двух электродов «электрод - электрод, расположенный через два электрода» оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуды и фазы ЭДС источников измеряющей частоты остальных электродов так, чтобы действующие значения токов измеряющей частоты в них стали равными нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод - подина» выбранной комбинации на измеряющей частоте, и вычисляют собственные разностно-потенциальные коэффициенты схемы замещения ванны в соответствии с выражениями где I, I, I, P, P, P, P, P, P - величины токов в первичной цепи источника питания измеряющей частоты в комбинациях пар «электрод - электрод, расположенный через два электрода» и активные мощности, выделяющиеся на участках «электрод - подина» соответствующих комбинаций электродов; w - количество витков первичной обмотки вводного устройства.
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ШЕСТИЭЛЕКТРОДНОЙ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ШЕСТИЭЛЕКТРОДНОЙ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ШЕСТИЭЛЕКТРОДНОЙ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ШЕСТИЭЛЕКТРОДНОЙ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ШЕСТИЭЛЕКТРОДНОЙ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ШЕСТИЭЛЕКТРОДНОЙ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
Источник поступления информации: Роспатент

Showing 41-50 of 92 items.
10.11.2015
№216.013.8b65

Огнестойкая резиновая смесь

Изобретение относится к огнестойкой резиновой смеси и может быть использовано в горнодобывающей и резинотехнической промышленности. Огнестойкая резиновая смесь содержит синтетический каучук изопреновый, синтетический каучук диеновый, поливинилхлорид, серу, сульфенамид Ц, оксид цинка, стеарин,...
Тип: Изобретение
Номер охранного документа: 0002567292
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bd9

Способ получения многослойных слитков

Изобретение относится к электрометаллургии, в частности к способам получения многослойных стальных слитков импульсно-электрошлаковым переплавом. Осуществляют импульсно-электрошлаковый переплав с изменением частоты импульсов комбинированного расходуемого электрода, выполненного с участками,...
Тип: Изобретение
Номер охранного документа: 0002567408
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d29

Клапанный приводной электромагнит постоянного напряжения

Изобретение относится к электромагнитным приводам постоянного напряжения. Техническим результатом изобретения является уменьшение потребляемой мощности. Клапанный приводной электромагнит содержит Г-образную скобу, на которой установлен ферромагнитный цилиндрический сердечник с обмоткой и...
Тип: Изобретение
Номер охранного документа: 0002567744
Дата охранного документа: 10.11.2015
10.01.2016
№216.013.9f04

Способ получения тетраоксиалкилзамещенных мочевин

Изобретение относится к способу получения тетраоксиалкилзамещенных мочевин общей формулы (I), где R - -(СН)-; -(СН)-. Способ включает прибавление диизоцианата к охлажденному раствору диэтаноламина в хлороформе в мольном соотношении компонентов 1:2, выдержку полученной смеси, фильтрование и...
Тип: Изобретение
Номер охранного документа: 0002572345
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a077

Способ моделирования экспериментального амилоидоза у животных

Изобретение относится к медицине, а именно к экспериментальной биологии, и может быть использовано для моделирования экспериментального амилоидоза у животных. Для этого проводят введение молодой мыши через день подкожно в течение 30 дней эксперимента белкового препарата, содержащего нативный...
Тип: Изобретение
Номер охранного документа: 0002572721
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a38d

Полиуретановая композиция

Изобретение относится к быстроотверждающимся полиуретановым композициям, используемым в качестве защитных покрытий, клеев, герметиков, напольных покрытий. Композиция содержит, мас.ч.: уретановый форполимер 100, отвердитель 25,2-31,8, краситель 0,1-0,7. Уретановый форполимер представляет собой...
Тип: Изобретение
Номер охранного документа: 0002573511
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c445

Способ получения алкилзамещенных 4-галоген-3-гидроксифуро[3,4-c]пиридин-1(3н)-онов

Изобретение относится к способу получения новых алкилзамещенных 4-галоген-3-гидроксифуро[3,4-с]пиридин-1(3H)-онов общей формулы I, где R=R=CH, Hlg=Cl; R=СН, R=CH, Hlg=Cl; R=CH, R=CH, Hlg=Cl; R=R=CH, Hlg=Br; R=CH, R=CH, Hlg=Br; R=СН, R=CH, Hlg=Br, заключающемуся в том, что соответствующий...
Тип: Изобретение
Номер охранного документа: 0002574412
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4db

Противопригарная краска для литейных форм и стержней

Изобретение относится к литейному производству. Противопригарная краска содержит, мас.%: цирконовый концентрат 60-67, бентонит 1-3, лигносульфонат технический 2-5, мыло хозяйственное 0,5-2 и воду остальное. Обеспечивается улучшение технологических и эксплуатационных характеристик краски. 2 табл.
Тип: Изобретение
Номер охранного документа: 0002574615
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c550

Состав противопригарного покрытия для литейных форм и стержней

Изобретение относится к литейному производству. Покрытие содержит, мас.%: огнеупорный наполнитель - дистенсиллиманит 33-35, алюмохромфосфатное связующее 12-30, трепел 4-7, каолинитовую глину 2-5 и воду остальное. Обеспечивается улучшение технологических и эксплуатационных характеристик...
Тип: Изобретение
Номер охранного документа: 0002574616
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c701

Способ лечения депрессии

Изобретение относится к области медицины, а именно к восстановительной медицине, и может быть использовано в том числе в неонатальной практике лечения пограничных психических расстройств. Проводят акупунктурное воздействие на биологически активные точки акупунктурных каналов F5, H1, F4, Н6, F2....
Тип: Изобретение
Номер охранного документа: 0002578819
Дата охранного документа: 27.03.2016
Showing 41-50 of 97 items.
10.05.2015
№216.013.4b20

Способ определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной руднотермической печи

Изобретение относится к электротермии. В способе определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной руднотермической печи, в качестве электрического параметра определяют собственный разностно-потенциальный коэффициент ванны...
Тип: Изобретение
Номер охранного документа: 0002550739
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c45

Композиционный материал на основе меди для электродов контактной сварки оцинкованных сталей

Изобретение может быть использовано при контактной сварке оцинкованных сталей. Композиционный материал содержит компоненты в следующем соотношении, мас.%: титан 0,2-1,1, углерод 0,05-0,20, медь - остальное. Изготовленные из указанного материала электроды для контактной сварки обладают высокой...
Тип: Изобретение
Номер охранного документа: 0002551039
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5136

Способ определения тиосульфата натрия в растворах

Изобретение относится к аналитической химии и может быть использовано в системе контроля за содержанием тиосульфата натрия в растворах. Способ определения тиосульфата натрия в растворах характеризуется введением анализируемой пробы в реакционный сосуд, содержащий соответствующее количество...
Тип: Изобретение
Номер охранного документа: 0002552311
Дата охранного документа: 10.06.2015
20.08.2015
№216.013.6e98

Способ нейтрализации и осушки реакционных газов производства хлорметанов

Изобретение относится к способу нейтрализации и осушки реакционных газов в производстве хлорметанов. Способ включает нейтрализацию реакционных газов нейтрализующим раствором, осушку реакционных газов раствором хлористого кальция при температуре ниже минус 15°C. Способ характеризуется тем, что в...
Тип: Изобретение
Номер охранного документа: 0002559882
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6e99

Резиновая смесь

Изобретение относится к резиновой смеси и может быть использовано в качестве эластичных резиновых элементов, применяемых в производстве пакерно-якорного оборудования в нефтегазодобывающей отрасли. Резиновая смесь содержит бутадиен-нитрильный каучук и частично гидрированный бутадиен-нитрильный...
Тип: Изобретение
Номер охранного документа: 0002559883
Дата охранного документа: 20.08.2015
10.11.2015
№216.013.8b65

Огнестойкая резиновая смесь

Изобретение относится к огнестойкой резиновой смеси и может быть использовано в горнодобывающей и резинотехнической промышленности. Огнестойкая резиновая смесь содержит синтетический каучук изопреновый, синтетический каучук диеновый, поливинилхлорид, серу, сульфенамид Ц, оксид цинка, стеарин,...
Тип: Изобретение
Номер охранного документа: 0002567292
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bd9

Способ получения многослойных слитков

Изобретение относится к электрометаллургии, в частности к способам получения многослойных стальных слитков импульсно-электрошлаковым переплавом. Осуществляют импульсно-электрошлаковый переплав с изменением частоты импульсов комбинированного расходуемого электрода, выполненного с участками,...
Тип: Изобретение
Номер охранного документа: 0002567408
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d29

Клапанный приводной электромагнит постоянного напряжения

Изобретение относится к электромагнитным приводам постоянного напряжения. Техническим результатом изобретения является уменьшение потребляемой мощности. Клапанный приводной электромагнит содержит Г-образную скобу, на которой установлен ферромагнитный цилиндрический сердечник с обмоткой и...
Тип: Изобретение
Номер охранного документа: 0002567744
Дата охранного документа: 10.11.2015
10.01.2016
№216.013.9f04

Способ получения тетраоксиалкилзамещенных мочевин

Изобретение относится к способу получения тетраоксиалкилзамещенных мочевин общей формулы (I), где R - -(СН)-; -(СН)-. Способ включает прибавление диизоцианата к охлажденному раствору диэтаноламина в хлороформе в мольном соотношении компонентов 1:2, выдержку полученной смеси, фильтрование и...
Тип: Изобретение
Номер охранного документа: 0002572345
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a077

Способ моделирования экспериментального амилоидоза у животных

Изобретение относится к медицине, а именно к экспериментальной биологии, и может быть использовано для моделирования экспериментального амилоидоза у животных. Для этого проводят введение молодой мыши через день подкожно в течение 30 дней эксперимента белкового препарата, содержащего нативный...
Тип: Изобретение
Номер охранного документа: 0002572721
Дата охранного документа: 20.01.2016
+ добавить свой РИД