×
20.08.2016
216.015.4edc

Результат интеллектуальной деятельности: СПОСОБ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ ИЗ (α+β) ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке полуфабрикатов из титановых сплавов, и может быть использовано в авиакосмической технике. Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов заключается в том, что осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с. Затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C. Последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения, со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе. Полученная структура сплава характеризуется сверхмелким зерном и однородной морфологией структурных составляющих. Сплав имеет высокие значения предела выносливости и малоцикловой усталости. 1 табл., 3 пр.
Основные результаты: Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов, заключающийся в том, что осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с, затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C, а последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе.

Изобретение относится к области металлургии, в частности к способу высокотемпературной термомеханической обработки полуфабрикатов из (α+β)-титановых сплавов, и может быть использовано в машиностроении и авиационной технике.

Как известно, термомеханические параметры обработки давлением титановых сплавов, наряду с легированием, являются главными для обеспечения требуемого уровня механических свойств и эксплуатационных характеристик, их стабильности и анизотропии, гарантией отсутствия преждевременного разрушения.

Известен способ высокотемпературной термомеханической обработки, заключающийся в нагреве до температуры на 50-100°C ниже температуры полиморфного превращения, деформации на 50%, охлаждении в воде и последующим старением в течение 10 ч (Бернштейн М.Л., Термомеханическая обработка металлов и сплавов, т. 2, М., Металлургия, 1968, с. 1153).

Однако, после такой обработки предел выносливости (σ-1 на базе 107 циклов) и малоцикловая усталость (МЦУ) не достигают требуемого уровня (σ-1≥44 кгс/мм2, МЦУ≥100000 циклов при σmax=70 кгс/мм2 и при σmax=45 кгс/мм2, Kt=4,0).

Известен также способ высокотемпературной термомеханической обработки титановых сплавов, заключающийся в нагреве заготовок сплава до температуры β-области и деформации со степенью 60-70% при этой температуре. Затем заготовки нагревают до температуры окончания полиморфного превращения и проводят повторную деформацию, после чего вновь осуществляют нагрев до температуры окончания полиморфного превращения и проводят окончательную деформацию, причем ее завершают при температуре двухфазной области, соответствующей содержанию β-фазы 25-40%, непосредственно после чего осуществляют закалку в воде и старение при 630-650°C (а.с. №1613505, МПК C22F 1/18, опубл. 15.12.1990).

Однако после подобной обработки характеристики выносливости и малоцикловой усталости сплава также не достигают требуемого уровня.

Достаточно заметно повысить вышеуказанные характеристики позволяет способ высокотемпературной термомеханической обработки, заключающийся в деформации в β-области со степенью 30-90% при температуре на 10-350°C выше температуры полиморфного превращения, затем в (α+β)-области со степенью 10-30% при температуре на 20-50°C ниже температуры полиморфного превращения, затем при температуре на 10-100°C выше температуры полиморфного превращения, затем при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 30-70%, причем деформацию ведут со скоростью 5-60 мм/с при охлаждении полуфабриката на 20-300°C, после чего проводят деформацию со степенью 30-95% в изотермических условиях при температуре в интервале на 100°C выше и на 300°C ниже температуры полиморфного превращения, со скоростью деформирования 0,01-4,0 мм/с и последующим охлаждении на воздухе (а.с. №1106175, МПК C22F 1/18, опубл. 10.07.2015 г.).

Однако, как было обнаружено, при таком способе высокотемпературной термомеханической обработки повышение характеристик выносливости и малоцикловой усталости сплавов обеспечивается не регулярно, что ведет к невозможности добиться стабильности в получении необходимого уровня требуемых характеристик.

Технической задачей и техническим результатом заявленного способа является повышение предела выносливости и малоцикловой усталости, что позволит повысить ресурс и надежность деталей и узлов летательных аппаратов.

Технический результат достигается путем осуществления высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов, при этом осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с, затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C, а последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе.

Положительный эффект заявленного способа обусловлен тем, что в процессе совокупного воздействия на металл многостадийной высокотемпературной термомеханической обработки и регламентированных скоростей деформации, достигается структурное состояние, характеризующееся сверхмелким зерном, однородной морфологией структурных составляющих и фазовым составом полуфабрикатов из титановых сплавов, обеспечивающих более высокие показатели предела усталости и малоцикловой усталости. Известно, что деформацию в β-области возможно проводить с достаточно большими скоростями за счет высокой технологичной пластичности и возможности воздействия высоких удельных давлений при температурах β-области. Однако, деформация в β-области со скоростями выше 300 мм/с уже не обеспечивает однородности структуры, вследствие чего возможно образование трещин и других дефектов. Деформация в (α+β)-области со скоростями более 60 мм/с может повлечь за собой разрушение полуфабриката, поскольку при данной температуре снижается технологическая пластичность металла и увеличивается сопротивление титановых сплавов деформации.

По сравнению с прототипом, исключение из технологического процесса изготовления полуфабрикатов деформации при температуре на 10-100°C выше температуры полиморфного превращения, позволяет на последующих стадиях высокотемпературной термомеханической обработки получить мелкозернистую однородную структуру, обеспечивающую высокие показатели предела выносливости и малоцикловой усталости, однако, при этом уменьшается трудоемкость процесса деформации в целом.

Предложенный способ был опробован при обработке поковок из сплава ВТ23М, температура полиморфного превращения которого составляет 900°C.

Примеры осуществления изобретения

Пример 1

Высокотемпературную термомеханическую обработку проводят по следующему способу: деформация в β-области со степенью 40% и скоростью 75 мм/с при 1050°C, затем в (α+β)-области со степенью 15% и скоростью 20 мм/с при температуре 870°C, затем при температуре 850°C со степенью 50%, причем деформацию ведут со скоростью 20 мм/с при охлаждении полуфабриката до 700°C, после чего проводят деформацию со степенью 50% в изотермических условиях при температуре 800°C, со скоростью деформирования 2,0 мм/с, последующее охлаждение на воздухе. Поковки, полученные данным способом, обладали следующим уровнем свойств: МЦУ=270000 при σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и МЦУ=225000 при σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0), предел выносливости σ-1 (на базе 10 циклов)=65 кгс/мм2.

Пример 2

Высокотемпературную термомеханическую обработку проводят по следующему способу: деформация в β-области со степенью 30% и скоростью 150 мм/с при 1000°C, затем в (α+β)-области со степенью 20% и скоростью 15 мм/с при температуре 880°C, затем при температуре 860°C со степенью 60%, причем деформацию ведут со скоростью 35 мм/с при охлаждении полуфабриката до 750°C, после чего проводят деформацию со степенью 60% в изотермических условиях при температуре 820°C, со скоростью деформирования 2,5 мм/с, последующее охлаждение на воздухе. Поковки, полученные данным способом, обладали следующим уровнем свойств: МЦУ=235000 при σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и МЦУ=195000 при σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0), предел выносливости σ-1 (на базе 10 циклов)=58 кгс/мм2.

Пример 3

Высокотемпературную термомеханическую обработку проводят по следующему способу: деформация в β-области со степенью 60% и скоростью 200 мм/с при 1200°C, затем в (α+β)-области со степенью 10% и скоростью 10 мм/с при температуре 860°C, затем при температуре 850°C со степенью 45%, причем деформацию ведут со скоростью 30 мм/с при охлаждении полуфабриката до 780°C, после чего проводят деформацию со степенью 65% в изотермических условиях при температуре 850°C, со скоростью деформирования 4,0 мм/с, последующее охлаждение на воздухе. Поковки, полученные данным способом, обладали следующим уровнем свойств: МЦУ=250000 при σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и МЦУ=210000 при σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0), предел выносливости σ-1 (на базе 10 циклов)=62 кгс/мм2.

В таблице 1 приведены сравнительные характеристики усталостной прочности: малоцикловая усталость при максимальном напряжении цикла σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0) и предел выносливости σ-1 (на базе 107 циклов) после обработки по способу-прототипу и предложенному способу (примеры 1-3).

Как видно из таблицы, после обработки по предложенному способу число циклов до разрушения возрастает на 17,5-40,6%, а предел выносливости на 11,5-25% по сравнению с обработкой по прототипу.

Таким образом, после высокотемпературной термомеханической обработки, предложенной в заявленном изобретении, возрастает ресурс изделий и их надежность в эксплуатации при одновременном уменьшении трудоемкости процесса изготовления полуфабрикатов.

Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов, заключающийся в том, что осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с, затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C, а последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе.
Источник поступления информации: Роспатент

Showing 101-110 of 370 items.
20.01.2016
№216.013.a3ac

Металлические волокна из жаростойкого сплава (варианты) и изделие, выполненное из металлических волокон

Группа изобретений относится к металлическим волокнам жаростойкого сплава, которые могут быть использованы для получения истираемых уплотнений проточной части турбины авиационного газотурбинного двигателя. Волокна по варианту 1 выполнены из сплава на основе системы Fe-Cr-Al-Y и содержат 21-27...
Тип: Изобретение
Номер охранного документа: 0002573542
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3ad

Способ получения изделий из алюминиевых сплавов

Изобретение относится к области металлургии, а именно к технологии получения изделий методом горячей деформации алюминиевых сплавов, преимущественно высокопрочных и жаропрочных, для использования главным образом в авиакосмической технике и транспортном машиностроении. Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002573543
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0c5

Сплав на основе алюминия

Изобретение относится к области цветной металлургии, в частности к термически неупрочняемым алюминиевым сплавам системы алюминий - магний, и может быть использовано для изготовления высоконагруженных элементов изделий. Сплав на основе алюминия содержит, мас.%: магний 5,0-5,8, скандий 0,15-0,28,...
Тип: Изобретение
Номер охранного документа: 0002576286
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c152

Холоднотвердеющая смесь для изготовления форм и стержней

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых и магниевых сплавов. Холоднотвердеющая смесь содержит, мас.ч.: кремнезем - 100, карбамидная смола - 2,1-3,5, ортофосфорная кислота - 0,5-1,3, по меньшей мере, одно соединение бора - 0,1-0,3, и...
Тип: Изобретение
Номер охранного документа: 0002576289
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c167

Способ получения интерметаллидных сплавов на основе алюминида титана с повышенным содержанием ниобия

Изобретение относится к области металлургии, а именно к способам выплавки титановых сплавов и может быть использовано при производстве полуфабрикатов, предназначенных для изготовления деталей газотурбинных двигателей, силовых установок, агрегатов авиационного, топливно-энергетического и...
Тип: Изобретение
Номер охранного документа: 0002576288
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1ff

Композиция для антикоррозионного покрытия

Изобретение относится к области полимерных композиций на основе модифицированных олигомеров для защиты конструкций из алюминиевых сплавов, стали и углепластика при температурах эксплуатации от -60°С до 150°С и может быть использовано в авиационной промышленности. Полимерная композиция для...
Тип: Изобретение
Номер охранного документа: 0002574512
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32c

Способ изготовления деталей из полимерных композиционных материалов

Изобретение относится к области изготовления деталей и элементов конструкций из полимерных композиционных материалов (ПКМ) методом послойной выкладки и может быть использовано в автомобиле-, судостроении и в авиационной промышленности, в частности при изготовлении мотогондол двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002574269
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c393

Малодеформационная закалка алюминиевых сплавов

Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных...
Тип: Изобретение
Номер охранного документа: 0002574928
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
Showing 101-110 of 336 items.
20.01.2016
№216.013.a3ac

Металлические волокна из жаростойкого сплава (варианты) и изделие, выполненное из металлических волокон

Группа изобретений относится к металлическим волокнам жаростойкого сплава, которые могут быть использованы для получения истираемых уплотнений проточной части турбины авиационного газотурбинного двигателя. Волокна по варианту 1 выполнены из сплава на основе системы Fe-Cr-Al-Y и содержат 21-27...
Тип: Изобретение
Номер охранного документа: 0002573542
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3ad

Способ получения изделий из алюминиевых сплавов

Изобретение относится к области металлургии, а именно к технологии получения изделий методом горячей деформации алюминиевых сплавов, преимущественно высокопрочных и жаропрочных, для использования главным образом в авиакосмической технике и транспортном машиностроении. Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002573543
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0c5

Сплав на основе алюминия

Изобретение относится к области цветной металлургии, в частности к термически неупрочняемым алюминиевым сплавам системы алюминий - магний, и может быть использовано для изготовления высоконагруженных элементов изделий. Сплав на основе алюминия содержит, мас.%: магний 5,0-5,8, скандий 0,15-0,28,...
Тип: Изобретение
Номер охранного документа: 0002576286
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c152

Холоднотвердеющая смесь для изготовления форм и стержней

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых и магниевых сплавов. Холоднотвердеющая смесь содержит, мас.ч.: кремнезем - 100, карбамидная смола - 2,1-3,5, ортофосфорная кислота - 0,5-1,3, по меньшей мере, одно соединение бора - 0,1-0,3, и...
Тип: Изобретение
Номер охранного документа: 0002576289
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c167

Способ получения интерметаллидных сплавов на основе алюминида титана с повышенным содержанием ниобия

Изобретение относится к области металлургии, а именно к способам выплавки титановых сплавов и может быть использовано при производстве полуфабрикатов, предназначенных для изготовления деталей газотурбинных двигателей, силовых установок, агрегатов авиационного, топливно-энергетического и...
Тип: Изобретение
Номер охранного документа: 0002576288
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1ff

Композиция для антикоррозионного покрытия

Изобретение относится к области полимерных композиций на основе модифицированных олигомеров для защиты конструкций из алюминиевых сплавов, стали и углепластика при температурах эксплуатации от -60°С до 150°С и может быть использовано в авиационной промышленности. Полимерная композиция для...
Тип: Изобретение
Номер охранного документа: 0002574512
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32c

Способ изготовления деталей из полимерных композиционных материалов

Изобретение относится к области изготовления деталей и элементов конструкций из полимерных композиционных материалов (ПКМ) методом послойной выкладки и может быть использовано в автомобиле-, судостроении и в авиационной промышленности, в частности при изготовлении мотогондол двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002574269
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c393

Малодеформационная закалка алюминиевых сплавов

Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных...
Тип: Изобретение
Номер охранного документа: 0002574928
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
+ добавить свой РИД