×
20.08.2016
216.015.4ec1

Результат интеллектуальной деятельности: СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ

Вид РИД

Изобретение

№ охранного документа
0002595240
Дата охранного документа
20.08.2016
Аннотация: Изобретение относится к космическим спутниковым системам локального обзора. Система состоит из спутников с оптико-электронной аппаратурой дистанционного зондирования, размещенных на круговых орбитах с одинаковыми высотами и наклонениями. Восходящие узлы орбит перемещаются относительно проекции Солнца на экваториальную плоскость с ненулевой угловой скоростью. Каждый спутник имеет перерывы в наблюдении заданного широтного пояса поверхности планеты: с максим. (более периода его обращения) и миним. (не более периода обращения) временами. Соответственно восходящие узлы спутниковых орбит разнесены на угол из диапазона от нижнего значения, равного углу поворота с указанной угловой скоростью за указанное миним. время, до верхнего значения, равного углу данного поворота за указанное максим. время. Технический результат изобретения заключается в сокращении перерывов наблюдения освещенных районов планеты при оптимальном выборе числа орбитальных плоскостей и уменьшении затрат топлива на поддержание спутниковой структуры. 6 ил.
Основные результаты: Система спутников наблюдения планеты, включающая искусственные спутники, оснащенные оптико-электронной аппаратурой дистанционного зондирования и размещенные на круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью имеющие многовитковые перерывы в наблюдении широтного пояса планеты с максимальной продолжительностью T, и периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью T, отличающаяся тем, что спутники системы размещены в орбитальных плоскостях с восходящими узлами, разнесенными относительно друг друга на угол ΔΩ, значение которого определяется следующим образом

Изобретение относится к космической технике и может быть использовано при создании космических систем локального наблюдения поверхности планеты солнечной системы, в частности Земли.

Для наблюдения поверхности Земли из космоса в видимом или инфракрасном диапазоне излучения используют спутники с оптико-электронной аппаратурой дистанционного зондирования (ОЭАДЗ), размещаемые обычно на солнечно-синхронных орбитах. Местное время восходящего узла орбиты данного типа не изменяется, т.е. угловое расстояние между восходящим узлом орбиты и проекцией Солнца на экваториальную плоскость остается постоянным. Основное преимущество спутника, расположенного на солнечно-синхронной орбите, заключается в том, что он пересекает одну и ту же широту планеты в одно и то же местное время. Последнее обеспечивает постоянство условий освещения трассы спутника.

В настоящее время созданы системы наблюдения Земли, включающие спутники с ОЭАДЗ на солнечно-синхронных круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, такие как RapidEye, SSCEDMF, A-Train и DMC (Тертышников А.В., Кучейко А.А. Оперативный космический мониторинг ЧС: история, состояние и перспективы // Земля из космоса, 2010, №4, с. 7-13).

Известны проекты спутниковых систем наблюдения, состоящих из спутников с ОЭАДЗ на солнечно-синхронных круговых орбитах с одинаковыми высотами и одинаковыми наклонениями (патент США №6241192; Mortari D., Matthew P. Wilkins M.P., Bruccoleri С. On Sun-Synchronous Orbits and Associated Constellations. - 6-th DCSSS Conference, Italy, Riomaggiore, 2004, July 18-22; Ulivieri, C., Laneve, G., & Hajazi, M. Small satellites constellations for continuous regional surveillance // Space Flight Dynamics, Proceedings of the 12th International, Germany, Edited by T-D Guyenne, ESA SP-403, Paris: European Space Agency, 1997, pp. 485-491).

Основными недостатками данного типа космических систем наблюдения являются затраты топлива на коррекцию орбитальных параметров, возмущаемых атмосферой и притяжением третьих тел, для поддержания условия солнечной синхронности и повторяемости трассы, а также ограничения, накладываемые на наклонения и высоты орбит спутников.

В ряде случаев (например, при отсутствии трасс выведения космических аппаратов на наклонения, близкие к солнечно-синхронным, или при использовании многоцелевых космических аппаратов) для наблюдения поверхности планеты из космоса применяют орбиты с изменяющимся местным временем восходящего узла (Sandau R., Roeser Н. - Р., Valenzuela А. Small Satellite Missions for Earth Observation: New Developments and Trends. - Germany, Springer, 2010, с. 67-72; Баринов К.Н., Бурдаев М.Н., Мамон П.А. Динамика и принципы построения орбитальных систем космических аппаратов. - М.: Машиностроение, 1975, с. 28-30). Восходящий узел орбиты такого типа с течением времени перемещается относительно проекции Солнца на экваториальную плоскость, в результате чего у расположенного на ней спутника появляются многовитковые перерывы, в течение которых отсутствуют условия для съемки подстилающей поверхности в видимом и инфракрасном диапазоне длин волн.

Известна система спутников наблюдения поверхности планеты, конкретно Земли (Ulivieri C., Laneve G., & Hajazi M. Small satellites constellations for continuous regional surveillance // Space Flight Dynamics, Proceedings of the 12th International, Germany. Edited by T. - D. Guyenne. ESA SP-403. Paris: European Space Agency, 1997, pp. 485-491), выбранная за прототип, включающая искусственные спутники, оснащенные оптико-электронной аппаратурой дистанционного зондирования и расположенные на круговых орбитах с одинаковыми наклонениями и одинаковыми высотами, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью Каждый из спутников данной системы размещается на кратно-солнечно-синхронной орбите и имеет многовитковые перерывы в наблюдении широтного пояса планеты с максимальной продолжительностью Tпер, повторяющиеся через период кратности, а также периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью Tнаб. Спутники системы сгруппированы в одной или нескольких орбитальных плоскостях с равномерно разнесенными линиями узлов. Число орбитальных плоскостей и, следовательно, углы между смежными восходящими узлами определяются в зависимости от требуемой частоты повторения условий освещенности исследуемого района поверхности Земли.

При построении спутниковой системы, принятой за прототип, не учтено изменение освещенности поверхности Земли в результате годового перемещения Солнца относительно экватора. К недостаткам следует отнести также то, что сокращение многовитковых перерывов в наблюдении поверхности Земли данной системой возможно только за счет добавления в нее спутников. Помимо этого, условия солнечной кратности и повторяемости трассы обеспечиваются за счет расхода топлива на поддержание параметров орбит спутников.

Технический результат изобретения заключается в сокращении продолжительности перерывов наблюдения освещенных районов планеты при оптимальном выборе числа орбитальных плоскостей системы и сокращении топлива на поддержание спутниковой структуры.

Технический результат достигается тем, что в системе спутников наблюдения планеты, состоящей из искусственных спутников с оптико-электронной аппаратурой дистанционного зондирования, расположенных на круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью имеющих многовитковые перерывы в наблюдении широтного пояса поверхности планеты с максимальной продолжительностью Tпер, а также периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью Tнаб, в отличие от известной системы восходящие узлы спутниковых орбит разнесены в пространстве на угол ΔΩ, значение которого принадлежит диапазону

Сущность изобретения поясняется чертежами, на которых:

- на фиг. 1 изображен участок поверхности планеты, освещенность которого достаточна для наблюдения из космоса с помощью оптико-электронной аппаратуры;

- на фиг. 2 - возможное положение трасс спутников относительно региона на поверхности планеты, доступного для наблюдения из космоса при любом положении Солнца относительно экватора;

- на фиг. 3 - изменение пределов обзора поверхности Земли по широте φ на годовом интервале для спутника, расположенного на круговой орбите с наклонением 50°;

- на фиг. 4 - пределы обзора поверхности планеты по широте φ в зависимости от угла α между восходящим узлом орбиты и проекцией Солнца на экваториальную плоскость для двух вариантов а и б значений наклонения;

- на фиг. 5 - зависимость максимального и минимального межузлового расстояния ΔΩ от широты подспутниковой точки φ для двух вариантов а и б значений наклонения;

- на фиг. 6 - изменение пределов обзора поверхности Земли по широте на годовом интервале для системы спутников, расположенных в двух орбитальных плоскостях с наклонением 50° и восходящими узлами, разнесенными на угол 126,7°.

При этом на фиг. 1-6 приняты следующие обозначения:

φ - широта подспутниковой точки;

η - угол между плоскостью, касательной к поверхности планеты, и направлением на Солнце;

φa, φb - планетоцентрические широты;

ΔΩc - интервал значений α, в пределах которого можно наблюдать широту φ поверхности планеты при любом положении Солнца относительно экватора;

ΔΩп - максимальный интервал значений α, в пределах которого наблюдение широты φ поверхности планеты либо невозможно, либо осуществимо при определенном положении Солнца относительно экватора;

φ* - предельная широта, наблюдаемая в надир системой спутников с перерывами меньше орбитального периода;

ΔΩ* - угловое расстояние между восходящими узлами двух смежных орбит, обеспечивающее наблюдение поверхности в диапазоне широт с перерывами меньше орбитального периода.

1 - поток излучения;

2 - терминатор;

3 - наблюдаемая область на поверхности планеты;

4 - положение границы освещенного региона поверхности планеты при расположении Солнца под экватором;

5 - положение границы освещенного региона поверхности планеты при расположении Солнца над экватором;

6 - область на поверхности планеты, всегда освещенная в течение оборота планеты вокруг Солнца;

7 - экватор планеты;

8 - трасса спутника с освещенным участком в диапазоне широт [φa, φb];

9 - трасса спутника, у которого отсутствуют условия для наблюдения планеты.

Принцип построения предлагаемой спутниковой системы наблюдения основан на том факте (см. фиг. 1), что для съемки из космоса в видимом и инфракрасном диапазоне длин волн доступен освещенный потоком солнечного излучения 1 участок поверхности планеты, ограниченный терминатором 2. Устанавливаемая на борту спутников оптико-электронная аппаратура дистанционного зондирования (например, съемочная аппаратура высокого разрешения "Пегас", многоспектральное сканирующее устройство МСУ-Э, многозональная аппаратура МК-4, "Геотон" и "Гамма") имеет ограничение на минимальный угол возвышения Солнца η над плоскостью местного горизонта в точке съемки. Как правило, величина η составляет 10-20°. На фиг. 1 показана область 3 на поверхности планеты, в каждой точке которой возможна съемка в надир при углах возвышения Солнца, превышающих η.

Освещенный участок перемещается относительно экватора планеты вслед за годовым изменением положения Солнца. На фиг. 2 показано положение границ 4 и 5 освещенного участка поверхности относительно экватора 6 в случае нижней и верхней кульминации Солнца над плоскостью экватора. Часть поверхности планеты 7, образованная пересечением границ 4 и 5, доступна для наблюдения из космоса в любой момент времени в течение периода обращения планеты относительно Солнца.

На фиг. 2 показаны две трассы спутников 8 и 9. Спутник с трассой 8 в любое время года может наблюдать поверхность планеты на участке широт [φa, φb]. У спутника с трассой 9 отсутствуют условия для проведения съемки в период, когда Солнце располагается ниже экватора.

Вследствие прецессии восходящего узла орбиты спутника, вызываемой экваториальным сжатием планеты, а также вследствие годового движения планеты вокруг Солнца, положение плоскости орбиты относительно Солнца и трассы спутника относительно освещенного региона поверхности планеты постоянно изменяются. В результате спутник или совокупность вращающихся в одной орбитальной плоскости спутников имеют многовитковые перерывы, в течение которых отсутствуют условия для наблюдения северного и/или южного полушария планеты из-за недостаточной освещенности подстилающей поверхности. В качестве примера на фиг. 3 показано изменение пределов обзора поверхности Земли по широте φ на годовом интервале для системы спутников, расположенных на одной круговой орбите с наклонением 50°. В любой точке заштрихованной области на фиг. 3 угол возвышения Солнца η в подспутниковой точке превышает 10°.

Пределы обзора спутником поверхности планеты по широте изменяются в результате изменения угла α между восходящим узлом орбиты и проекцией Солнца на экваториальную плоскость. Эта зависимость представлена на фиг. 4 для двух значений угла ρ между плоскостью орбиты и плоскостью экватора в случае (а), когда для среднего наклона эклиптики к экватору ε выполняется условие

а также в случае (б), когда условие (1) не выполняется.

Для некоторой планетоцентрической широты φ на фиг. 4 показаны два интервала ΔΩc и ΔΩп. Спутник может наблюдать указанную широту φ поверхности планеты при любом положении Солнца относительно экватора, если угловое расстояние α между восходящим узлом орбиты спутника и проекцией Солнца на экваториальную плоскость находится в диапазоне ΔΩc. Если величина α располагается в диапазоне ΔΩп, то наблюдение той же широты данным спутником либо невозможно, либо осуществимо только при определенном положении Солнца относительно экватора. Поскольку восходящий узел орбиты перемещается относительно проекции Солнца на экваториальную плоскость со скоростью минимальный период времени tc, в течение которого спутник может наблюдать некоторую широту φ с перерывами меньше орбитального периода, составляет а максимальный период времени tп, в течение которого спутник не может наблюдать данную широту, составляет

Параметры ΔΩп и ΔΩc зависят от широты φ наблюдаемой подспутниковой точки, угла ρ между плоскостью орбиты и плоскостью экватора, а также допустимого для спутниковой оптико-электронной аппаратуры минимального угла η возвышения Солнца в точке съемки. Данную зависимость можно представить в следующем виде

где

φp - широта, на которой имеется разрыв функции ΔΩc(φ).

Примеры, иллюстрирующие изменение ΔΩп и ΔΩc в зависимости от широты φ представлены на фиг. 5 для случаев (а) и (б), когда величина ρ соответственно удовлетворяет и не удовлетворяет условию (1).

Многовитковые перерывы обзора tп некоторой широты φ, существующие у одного спутника или совокупности вращающихся в одной орбитальной плоскости спутников, предлагается совмещать с периодами, когда возможна съемка со второго спутника или второй совокупности вращающихся во второй орбитальной плоскости спутников, путем разнесения восходящих узлов их орбит на величину, принадлежащую диапазону

Для того, чтобы система спутников могла наблюдать некоторый интервал широт [φa, φb] с перерывами меньше орбитального периода, необходимо, чтобы существовала величина ΔΩ, удовлетворяющая неравенству (7) для любой широты из интервала [φa, φb]. Данное условие можно представить в следующем виде

где - максимум функции ΔΩп(φ) на интервале широт [φa, φb], - минимум функции на интервале широт [φa, φb].

Пусть Tнаб - минимальный период времени, в течение которого спутник может наблюдать требуемый диапазон широт [φa, φb] с перерывами меньше орбитального периода, т.е. Пусть Tпер - максимальный период времени, в течение которого спутник не может наблюдать требуемый диапазон широт [φa, φb], т.е. тогда неравенство (8) можно привести к виду

На фиг. 5 показан максимальный диапазон широт [-φ*, φ*], в пределах которого выполняется условие (9). Для максимальной широты φ* существует единственное значение углового расстояния между восходящими узлами орбит, обозначенное ΔΩ*, удовлетворяющее равенству

где угол δ при выполнении условия (1) равен широте φp разрыва функции ΔΩc(φ) и определяется по формуле (6), а в случае нарушения неравенства (1) равен широте точки пересечения функции ΔΩc(φ) с ΔΩп(φ) и определяется из уравнения

Например, для системы двух спутников Земли, расположенных на круговых орбитах с наклонением 50° и оснащенных оптико-электронной аппаратурой дистанционного зондирования МК-4, способной проводить измерения поверхности при углах возвышения Солнца η над исследуемой поверхностью свыше 10°, величина ΔΩ* составляет 127,6°. Для данной спутниковой системы на фиг. 6 представлено изменение пределов обзора поверхности Земли по широте на годовом интервале. В любой точке заштрихованной области на фиг. 6 выполняется условие: угол возвышения Солнца η в подспутниковой точке превышает 10°. По сравнению с системой спутников, пределы обзора которой представлены на фиг. 3, за счет разнесения орбитальных плоскостей обеспечено наблюдение поверхности Земли в надир не менее чем одним спутником в диапазоне геоцентрических широт [-φ*, φ*] и значительно сокращены перерывы наблюдения вне данного диапазона.

Система спутников наблюдения планеты, включающая искусственные спутники, оснащенные оптико-электронной аппаратурой дистанционного зондирования и размещенные на круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью имеющие многовитковые перерывы в наблюдении широтного пояса планеты с максимальной продолжительностью T, и периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью T, отличающаяся тем, что спутники системы размещены в орбитальных плоскостях с восходящими узлами, разнесенными относительно друг друга на угол ΔΩ, значение которого определяется следующим образом
СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ
СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ
СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ
Источник поступления информации: Роспатент

Showing 241-250 of 372 items.
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f8c

Способ испытаний на электромагнитную совместимость электроракетной двигательной установки с информационными бортовыми системами космического объекта, системы записи и воспроизведения характеристик тока разряда электроракетных двигателей электроракетной установки для реализации способа

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового...
Тип: Изобретение
Номер охранного документа: 0002605277
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9005

Способ определения деформации корпуса космического аппарата в полете

Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и...
Тип: Изобретение
Номер охранного документа: 0002605232
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b52b

Электрохимический генератор

Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на...
Тип: Изобретение
Номер охранного документа: 0002614242
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b57f

Устройство защиты и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без...
Тип: Изобретение
Номер охранного документа: 0002614335
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5f1

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом. При возвращении к Земле путём нескольких торможений в её...
Тип: Изобретение
Номер охранного документа: 0002614446
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b616

Способ управления транспортной космической системой

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне. После выведения ракетой-носителем на опорную орбиту...
Тип: Изобретение
Номер охранного документа: 0002614466
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b63d

Устройство крепления и расфиксации развертываемых панелей

20 Изобретение относится к средствам фиксации и быстрого дистанционного разделения элементов конструкций космических аппаратов (КА), их частей и других изделий. Устройство содержит узлы крепления панелей и сочленения в виде стаканов с коническими впадинами и выступами, взаимодействующими между...
Тип: Изобретение
Номер охранного документа: 0002614465
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6f0

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным перелётам в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и перевод на траекторию перелёта к Луне. Затем КА выводят на селеноцентрическую орбиту. По пребывании там заданное время КА переводят на...
Тип: Изобретение
Номер охранного документа: 0002614464
Дата охранного документа: 28.03.2017
Showing 241-250 of 293 items.
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e7f

Разъемное соединение

Изобретение относится к разъемным соединениям и предназначено для использования в области ракетно-космической техники, в частности в устройствах разделения криогенных заправочных магистралей, и может быть использовано в машиностроении. В разъемном соединении, состоящем из бортового штуцера с...
Тип: Изобретение
Номер охранного документа: 0002605278
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e93

Способ управления транспортной космической системой

Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L или L системы Земля...
Тип: Изобретение
Номер охранного документа: 0002605463
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ec0

Импульсная реактивная двигательная установка космического аппарата

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан...
Тип: Изобретение
Номер охранного документа: 0002605163
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ee2

Способ полуавтоматического управления причаливанием

Изобретение относится к управлению движением стыкуемых космических аппаратов (КА). Способ обеспечивает касание активного (АК) и пассивного (ПА) КА с требуемыми значениями скорости, для чего регулируют скорость причаливания в зависимости от дальности. По внешней команде автоматическую ориентацию...
Тип: Изобретение
Номер охранного документа: 0002605231
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f41

Способ определения момента времени схода наблюдаемого с космического аппарата ледника

Способ определения момента времени схода наблюдаемого с космического аппарата ледника основан на определении перемещения ледника за заданный промежуток времени, определении неподвижных характерных точек на склонах ледника. Осуществляют первую съемку ледника и неподвижных характерных точек с...
Тип: Изобретение
Номер охранного документа: 0002605528
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f8c

Способ испытаний на электромагнитную совместимость электроракетной двигательной установки с информационными бортовыми системами космического объекта, системы записи и воспроизведения характеристик тока разряда электроракетных двигателей электроракетной установки для реализации способа

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового...
Тип: Изобретение
Номер охранного документа: 0002605277
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9005

Способ определения деформации корпуса космического аппарата в полете

Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и...
Тип: Изобретение
Номер охранного документа: 0002605232
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
+ добавить свой РИД