×
20.08.2016
216.015.4ec1

Результат интеллектуальной деятельности: СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ

Вид РИД

Изобретение

№ охранного документа
0002595240
Дата охранного документа
20.08.2016
Аннотация: Изобретение относится к космическим спутниковым системам локального обзора. Система состоит из спутников с оптико-электронной аппаратурой дистанционного зондирования, размещенных на круговых орбитах с одинаковыми высотами и наклонениями. Восходящие узлы орбит перемещаются относительно проекции Солнца на экваториальную плоскость с ненулевой угловой скоростью. Каждый спутник имеет перерывы в наблюдении заданного широтного пояса поверхности планеты: с максим. (более периода его обращения) и миним. (не более периода обращения) временами. Соответственно восходящие узлы спутниковых орбит разнесены на угол из диапазона от нижнего значения, равного углу поворота с указанной угловой скоростью за указанное миним. время, до верхнего значения, равного углу данного поворота за указанное максим. время. Технический результат изобретения заключается в сокращении перерывов наблюдения освещенных районов планеты при оптимальном выборе числа орбитальных плоскостей и уменьшении затрат топлива на поддержание спутниковой структуры. 6 ил.
Основные результаты: Система спутников наблюдения планеты, включающая искусственные спутники, оснащенные оптико-электронной аппаратурой дистанционного зондирования и размещенные на круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью имеющие многовитковые перерывы в наблюдении широтного пояса планеты с максимальной продолжительностью T, и периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью T, отличающаяся тем, что спутники системы размещены в орбитальных плоскостях с восходящими узлами, разнесенными относительно друг друга на угол ΔΩ, значение которого определяется следующим образом

Изобретение относится к космической технике и может быть использовано при создании космических систем локального наблюдения поверхности планеты солнечной системы, в частности Земли.

Для наблюдения поверхности Земли из космоса в видимом или инфракрасном диапазоне излучения используют спутники с оптико-электронной аппаратурой дистанционного зондирования (ОЭАДЗ), размещаемые обычно на солнечно-синхронных орбитах. Местное время восходящего узла орбиты данного типа не изменяется, т.е. угловое расстояние между восходящим узлом орбиты и проекцией Солнца на экваториальную плоскость остается постоянным. Основное преимущество спутника, расположенного на солнечно-синхронной орбите, заключается в том, что он пересекает одну и ту же широту планеты в одно и то же местное время. Последнее обеспечивает постоянство условий освещения трассы спутника.

В настоящее время созданы системы наблюдения Земли, включающие спутники с ОЭАДЗ на солнечно-синхронных круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, такие как RapidEye, SSCEDMF, A-Train и DMC (Тертышников А.В., Кучейко А.А. Оперативный космический мониторинг ЧС: история, состояние и перспективы // Земля из космоса, 2010, №4, с. 7-13).

Известны проекты спутниковых систем наблюдения, состоящих из спутников с ОЭАДЗ на солнечно-синхронных круговых орбитах с одинаковыми высотами и одинаковыми наклонениями (патент США №6241192; Mortari D., Matthew P. Wilkins M.P., Bruccoleri С. On Sun-Synchronous Orbits and Associated Constellations. - 6-th DCSSS Conference, Italy, Riomaggiore, 2004, July 18-22; Ulivieri, C., Laneve, G., & Hajazi, M. Small satellites constellations for continuous regional surveillance // Space Flight Dynamics, Proceedings of the 12th International, Germany, Edited by T-D Guyenne, ESA SP-403, Paris: European Space Agency, 1997, pp. 485-491).

Основными недостатками данного типа космических систем наблюдения являются затраты топлива на коррекцию орбитальных параметров, возмущаемых атмосферой и притяжением третьих тел, для поддержания условия солнечной синхронности и повторяемости трассы, а также ограничения, накладываемые на наклонения и высоты орбит спутников.

В ряде случаев (например, при отсутствии трасс выведения космических аппаратов на наклонения, близкие к солнечно-синхронным, или при использовании многоцелевых космических аппаратов) для наблюдения поверхности планеты из космоса применяют орбиты с изменяющимся местным временем восходящего узла (Sandau R., Roeser Н. - Р., Valenzuela А. Small Satellite Missions for Earth Observation: New Developments and Trends. - Germany, Springer, 2010, с. 67-72; Баринов К.Н., Бурдаев М.Н., Мамон П.А. Динамика и принципы построения орбитальных систем космических аппаратов. - М.: Машиностроение, 1975, с. 28-30). Восходящий узел орбиты такого типа с течением времени перемещается относительно проекции Солнца на экваториальную плоскость, в результате чего у расположенного на ней спутника появляются многовитковые перерывы, в течение которых отсутствуют условия для съемки подстилающей поверхности в видимом и инфракрасном диапазоне длин волн.

Известна система спутников наблюдения поверхности планеты, конкретно Земли (Ulivieri C., Laneve G., & Hajazi M. Small satellites constellations for continuous regional surveillance // Space Flight Dynamics, Proceedings of the 12th International, Germany. Edited by T. - D. Guyenne. ESA SP-403. Paris: European Space Agency, 1997, pp. 485-491), выбранная за прототип, включающая искусственные спутники, оснащенные оптико-электронной аппаратурой дистанционного зондирования и расположенные на круговых орбитах с одинаковыми наклонениями и одинаковыми высотами, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью Каждый из спутников данной системы размещается на кратно-солнечно-синхронной орбите и имеет многовитковые перерывы в наблюдении широтного пояса планеты с максимальной продолжительностью Tпер, повторяющиеся через период кратности, а также периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью Tнаб. Спутники системы сгруппированы в одной или нескольких орбитальных плоскостях с равномерно разнесенными линиями узлов. Число орбитальных плоскостей и, следовательно, углы между смежными восходящими узлами определяются в зависимости от требуемой частоты повторения условий освещенности исследуемого района поверхности Земли.

При построении спутниковой системы, принятой за прототип, не учтено изменение освещенности поверхности Земли в результате годового перемещения Солнца относительно экватора. К недостаткам следует отнести также то, что сокращение многовитковых перерывов в наблюдении поверхности Земли данной системой возможно только за счет добавления в нее спутников. Помимо этого, условия солнечной кратности и повторяемости трассы обеспечиваются за счет расхода топлива на поддержание параметров орбит спутников.

Технический результат изобретения заключается в сокращении продолжительности перерывов наблюдения освещенных районов планеты при оптимальном выборе числа орбитальных плоскостей системы и сокращении топлива на поддержание спутниковой структуры.

Технический результат достигается тем, что в системе спутников наблюдения планеты, состоящей из искусственных спутников с оптико-электронной аппаратурой дистанционного зондирования, расположенных на круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью имеющих многовитковые перерывы в наблюдении широтного пояса поверхности планеты с максимальной продолжительностью Tпер, а также периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью Tнаб, в отличие от известной системы восходящие узлы спутниковых орбит разнесены в пространстве на угол ΔΩ, значение которого принадлежит диапазону

Сущность изобретения поясняется чертежами, на которых:

- на фиг. 1 изображен участок поверхности планеты, освещенность которого достаточна для наблюдения из космоса с помощью оптико-электронной аппаратуры;

- на фиг. 2 - возможное положение трасс спутников относительно региона на поверхности планеты, доступного для наблюдения из космоса при любом положении Солнца относительно экватора;

- на фиг. 3 - изменение пределов обзора поверхности Земли по широте φ на годовом интервале для спутника, расположенного на круговой орбите с наклонением 50°;

- на фиг. 4 - пределы обзора поверхности планеты по широте φ в зависимости от угла α между восходящим узлом орбиты и проекцией Солнца на экваториальную плоскость для двух вариантов а и б значений наклонения;

- на фиг. 5 - зависимость максимального и минимального межузлового расстояния ΔΩ от широты подспутниковой точки φ для двух вариантов а и б значений наклонения;

- на фиг. 6 - изменение пределов обзора поверхности Земли по широте на годовом интервале для системы спутников, расположенных в двух орбитальных плоскостях с наклонением 50° и восходящими узлами, разнесенными на угол 126,7°.

При этом на фиг. 1-6 приняты следующие обозначения:

φ - широта подспутниковой точки;

η - угол между плоскостью, касательной к поверхности планеты, и направлением на Солнце;

φa, φb - планетоцентрические широты;

ΔΩc - интервал значений α, в пределах которого можно наблюдать широту φ поверхности планеты при любом положении Солнца относительно экватора;

ΔΩп - максимальный интервал значений α, в пределах которого наблюдение широты φ поверхности планеты либо невозможно, либо осуществимо при определенном положении Солнца относительно экватора;

φ* - предельная широта, наблюдаемая в надир системой спутников с перерывами меньше орбитального периода;

ΔΩ* - угловое расстояние между восходящими узлами двух смежных орбит, обеспечивающее наблюдение поверхности в диапазоне широт с перерывами меньше орбитального периода.

1 - поток излучения;

2 - терминатор;

3 - наблюдаемая область на поверхности планеты;

4 - положение границы освещенного региона поверхности планеты при расположении Солнца под экватором;

5 - положение границы освещенного региона поверхности планеты при расположении Солнца над экватором;

6 - область на поверхности планеты, всегда освещенная в течение оборота планеты вокруг Солнца;

7 - экватор планеты;

8 - трасса спутника с освещенным участком в диапазоне широт [φa, φb];

9 - трасса спутника, у которого отсутствуют условия для наблюдения планеты.

Принцип построения предлагаемой спутниковой системы наблюдения основан на том факте (см. фиг. 1), что для съемки из космоса в видимом и инфракрасном диапазоне длин волн доступен освещенный потоком солнечного излучения 1 участок поверхности планеты, ограниченный терминатором 2. Устанавливаемая на борту спутников оптико-электронная аппаратура дистанционного зондирования (например, съемочная аппаратура высокого разрешения "Пегас", многоспектральное сканирующее устройство МСУ-Э, многозональная аппаратура МК-4, "Геотон" и "Гамма") имеет ограничение на минимальный угол возвышения Солнца η над плоскостью местного горизонта в точке съемки. Как правило, величина η составляет 10-20°. На фиг. 1 показана область 3 на поверхности планеты, в каждой точке которой возможна съемка в надир при углах возвышения Солнца, превышающих η.

Освещенный участок перемещается относительно экватора планеты вслед за годовым изменением положения Солнца. На фиг. 2 показано положение границ 4 и 5 освещенного участка поверхности относительно экватора 6 в случае нижней и верхней кульминации Солнца над плоскостью экватора. Часть поверхности планеты 7, образованная пересечением границ 4 и 5, доступна для наблюдения из космоса в любой момент времени в течение периода обращения планеты относительно Солнца.

На фиг. 2 показаны две трассы спутников 8 и 9. Спутник с трассой 8 в любое время года может наблюдать поверхность планеты на участке широт [φa, φb]. У спутника с трассой 9 отсутствуют условия для проведения съемки в период, когда Солнце располагается ниже экватора.

Вследствие прецессии восходящего узла орбиты спутника, вызываемой экваториальным сжатием планеты, а также вследствие годового движения планеты вокруг Солнца, положение плоскости орбиты относительно Солнца и трассы спутника относительно освещенного региона поверхности планеты постоянно изменяются. В результате спутник или совокупность вращающихся в одной орбитальной плоскости спутников имеют многовитковые перерывы, в течение которых отсутствуют условия для наблюдения северного и/или южного полушария планеты из-за недостаточной освещенности подстилающей поверхности. В качестве примера на фиг. 3 показано изменение пределов обзора поверхности Земли по широте φ на годовом интервале для системы спутников, расположенных на одной круговой орбите с наклонением 50°. В любой точке заштрихованной области на фиг. 3 угол возвышения Солнца η в подспутниковой точке превышает 10°.

Пределы обзора спутником поверхности планеты по широте изменяются в результате изменения угла α между восходящим узлом орбиты и проекцией Солнца на экваториальную плоскость. Эта зависимость представлена на фиг. 4 для двух значений угла ρ между плоскостью орбиты и плоскостью экватора в случае (а), когда для среднего наклона эклиптики к экватору ε выполняется условие

а также в случае (б), когда условие (1) не выполняется.

Для некоторой планетоцентрической широты φ на фиг. 4 показаны два интервала ΔΩc и ΔΩп. Спутник может наблюдать указанную широту φ поверхности планеты при любом положении Солнца относительно экватора, если угловое расстояние α между восходящим узлом орбиты спутника и проекцией Солнца на экваториальную плоскость находится в диапазоне ΔΩc. Если величина α располагается в диапазоне ΔΩп, то наблюдение той же широты данным спутником либо невозможно, либо осуществимо только при определенном положении Солнца относительно экватора. Поскольку восходящий узел орбиты перемещается относительно проекции Солнца на экваториальную плоскость со скоростью минимальный период времени tc, в течение которого спутник может наблюдать некоторую широту φ с перерывами меньше орбитального периода, составляет а максимальный период времени tп, в течение которого спутник не может наблюдать данную широту, составляет

Параметры ΔΩп и ΔΩc зависят от широты φ наблюдаемой подспутниковой точки, угла ρ между плоскостью орбиты и плоскостью экватора, а также допустимого для спутниковой оптико-электронной аппаратуры минимального угла η возвышения Солнца в точке съемки. Данную зависимость можно представить в следующем виде

где

φp - широта, на которой имеется разрыв функции ΔΩc(φ).

Примеры, иллюстрирующие изменение ΔΩп и ΔΩc в зависимости от широты φ представлены на фиг. 5 для случаев (а) и (б), когда величина ρ соответственно удовлетворяет и не удовлетворяет условию (1).

Многовитковые перерывы обзора tп некоторой широты φ, существующие у одного спутника или совокупности вращающихся в одной орбитальной плоскости спутников, предлагается совмещать с периодами, когда возможна съемка со второго спутника или второй совокупности вращающихся во второй орбитальной плоскости спутников, путем разнесения восходящих узлов их орбит на величину, принадлежащую диапазону

Для того, чтобы система спутников могла наблюдать некоторый интервал широт [φa, φb] с перерывами меньше орбитального периода, необходимо, чтобы существовала величина ΔΩ, удовлетворяющая неравенству (7) для любой широты из интервала [φa, φb]. Данное условие можно представить в следующем виде

где - максимум функции ΔΩп(φ) на интервале широт [φa, φb], - минимум функции на интервале широт [φa, φb].

Пусть Tнаб - минимальный период времени, в течение которого спутник может наблюдать требуемый диапазон широт [φa, φb] с перерывами меньше орбитального периода, т.е. Пусть Tпер - максимальный период времени, в течение которого спутник не может наблюдать требуемый диапазон широт [φa, φb], т.е. тогда неравенство (8) можно привести к виду

На фиг. 5 показан максимальный диапазон широт [-φ*, φ*], в пределах которого выполняется условие (9). Для максимальной широты φ* существует единственное значение углового расстояния между восходящими узлами орбит, обозначенное ΔΩ*, удовлетворяющее равенству

где угол δ при выполнении условия (1) равен широте φp разрыва функции ΔΩc(φ) и определяется по формуле (6), а в случае нарушения неравенства (1) равен широте точки пересечения функции ΔΩc(φ) с ΔΩп(φ) и определяется из уравнения

Например, для системы двух спутников Земли, расположенных на круговых орбитах с наклонением 50° и оснащенных оптико-электронной аппаратурой дистанционного зондирования МК-4, способной проводить измерения поверхности при углах возвышения Солнца η над исследуемой поверхностью свыше 10°, величина ΔΩ* составляет 127,6°. Для данной спутниковой системы на фиг. 6 представлено изменение пределов обзора поверхности Земли по широте на годовом интервале. В любой точке заштрихованной области на фиг. 6 выполняется условие: угол возвышения Солнца η в подспутниковой точке превышает 10°. По сравнению с системой спутников, пределы обзора которой представлены на фиг. 3, за счет разнесения орбитальных плоскостей обеспечено наблюдение поверхности Земли в надир не менее чем одним спутником в диапазоне геоцентрических широт [-φ*, φ*] и значительно сокращены перерывы наблюдения вне данного диапазона.

Система спутников наблюдения планеты, включающая искусственные спутники, оснащенные оптико-электронной аппаратурой дистанционного зондирования и размещенные на круговых орбитах с одинаковыми высотами и одинаковыми наклонениями, с восходящими узлами, перемещающимися относительно проекции Солнца на экваториальную плоскость с отличной от нуля угловой скоростью имеющие многовитковые перерывы в наблюдении широтного пояса планеты с максимальной продолжительностью T, и периоды, в течение которых возможно наблюдение со спутника широтного пояса планеты с перерывами меньше орбитального периода, с минимальной продолжительностью T, отличающаяся тем, что спутники системы размещены в орбитальных плоскостях с восходящими узлами, разнесенными относительно друг друга на угол ΔΩ, значение которого определяется следующим образом
СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ
СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ
СИСТЕМА СПУТНИКОВ НАБЛЮДЕНИЯ ПЛАНЕТЫ
Источник поступления информации: Роспатент

Showing 191-200 of 372 items.
20.04.2016
№216.015.34ac

Комбинированное терморегулирующее покрытие и способ его формирования

Изобретение относится к терморегулирующим покрытиям и способу их формирования на внешних поверхностях космических аппаратов с применением метода газотермического напыления. Комбинированное терморегулирующее покрытие содержит нанесенный на подложку подслой из металлического материала, слой...
Тип: Изобретение
Номер охранного документа: 0002581278
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3761

Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость...
Тип: Изобретение
Номер охранного документа: 0002581281
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ab9

Способ определения высоты облачности

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку...
Тип: Изобретение
Номер охранного документа: 0002583877
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6f

Способ выведения спутника на заданную околоземную орбиту

Изобретение относится к технологии запуска спутников на орбиту. Способ включает размещение спутника внутри космического корабля (КК) перед его выведением на орбиту. После выведения и стыковки КК с орбитальной станцией размещают спутник на внешней поверхности КК. Приводят в рабочее положение...
Тип: Изобретение
Номер охранного документа: 0002583981
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3beb

Двигательная установка космического объекта и гидравлический конденсатор для нее

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки...
Тип: Изобретение
Номер охранного документа: 0002583994
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
Showing 191-200 of 293 items.
10.07.2016
№216.015.2b23

Защитный экран космического аппарата от ударов техногенных частиц и метеороидов

Изобретение относится к защите космического аппарата от высокоскоростных частиц естественного или техногенного типа. Защитный экран выполнен из композиционного материала в виде эластичного полимерного связующего с внедренными в него частицами по крайней мере одного порошка тяжелого металла....
Тип: Изобретение
Номер охранного документа: 0002591127
Дата охранного документа: 10.07.2016
10.04.2016
№216.015.3021

Устройство для мажоритарного выбора сигналов (3 варианта)

Изобретение относится к области построения высоконадежных резервированных устройств и систем. Технический результат заключается в повышении надежности за счет формирования сигналов неисправности каждого канала (блока с число-импульсным выходом) и интегрировании сигнала неисправности каждого...
Тип: Изобретение
Номер охранного документа: 0002580791
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3034

Способ разгрузки силовых гироскопов космического аппарата с создаваемым магнитным моментом

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР). По магнитным моментам этих контуров определяют суммарное значение магнитного...
Тип: Изобретение
Номер охранного документа: 0002580593
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30ad

Устройство формирования сигналов управления (2 варианта)

Предлагаемая группа изобретений относится к области электронной техники и может быть использована в системах управления, где требуется высокая надежность выполнения заданного режима, например, в системах управления космическими аппаратами, в авиационной технике и в других системах. Технический...
Тип: Изобретение
Номер охранного документа: 0002580476
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.319b

Устройство обеспечения чистоты объектов космической головной части (2 варианта)

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке к старту ракеты космического назначения (РКН). Устройство обеспечения чистоты объектов космической головной части содержит побудитель расхода газового компонента, газовод, фильтр, рассекатель потока...
Тип: Изобретение
Номер охранного документа: 0002580602
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3212

Спасательный модуль

Изобретение относится к спасательной технике. Спасательный модуль включает жесткий корпус с носовой и кормовой частями, внутренней камерой, закрепленный на жестком корпусе салон с такелажным устройством. Он снабжен раскладываемыми опорами для установки на сушу. Жесткий корпус выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002580592
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34ac

Комбинированное терморегулирующее покрытие и способ его формирования

Изобретение относится к терморегулирующим покрытиям и способу их формирования на внешних поверхностях космических аппаратов с применением метода газотермического напыления. Комбинированное терморегулирующее покрытие содержит нанесенный на подложку подслой из металлического материала, слой...
Тип: Изобретение
Номер охранного документа: 0002581278
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3761

Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость...
Тип: Изобретение
Номер охранного документа: 0002581281
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ab9

Способ определения высоты облачности

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку...
Тип: Изобретение
Номер охранного документа: 0002583877
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
+ добавить свой РИД