×
27.08.2016
216.015.4d78

Результат интеллектуальной деятельности: ВЫДЕЛЕНИЕ ВРЕМЕННЫХ ВЫРАЖЕНИЙ ДЛЯ ТЕКСТОВ НА ЕСТЕСТВЕННОМ ЯЗЫКЕ

Вид РИД

Изобретение

№ охранного документа
0002595489
Дата охранного документа
27.08.2016
Аннотация: Изобретение относится к способу выделения временных выражений в текстах на естественном языке. Технический результат заключается в предоставлении возможности и использовании маркировки неразмеченных текстовых данных в алгоритме машинного обучения для разметки временных выражений в тексте на естественном языке. В способе разделяют текст на два непересекающихся поднабора: неразмеченных текстовых данных для тестирования и неразмеченных текстовых данных для обучения, размечают неразмеченные текстовые данные для тестирования, чтобы получить «золотое» множество, создают список регулярных выражений и механизм для разметки текстовых данных посредством списка регулярных выражений и осуществляют разметку неразмеченных текстовых данных для обучения для получения с грамматически размеченного текста и с частичной маркировкой временных выражений, обеспечивают обучение алгоритма машинного обучения с использованием размеченных текстовых данных, разметку неразмеченных текстовых данных для тестирования, посредством алгоритма машинного обучения. 6 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее раскрытие в целом относится к области обработки естественного языка и более конкретно к способу выделения временных выражений в текстах на естественном языке.

УРОВЕНЬ ТЕХНИКИ

Выделение временных выражений является задачей Обработки Естественного Языка (NLP). Оно также связано с задачей Информационного Поиска по текстам. Задачами, тесно связанными с задачей выделения временных выражений, являются резюмирование текстов.

Распознавание Именованных Сущностей и системы QA

Существует два основных подхода для решения задачи выделения временных выражений: подход, основанный на правилах и способы машинного обучения.

Идея основанных на правилах способов состоит в том, чтобы сопоставить фразы на естественном языке списку регулярных выражений. Обычно список выражений составляется лингвистом, экспертом в языке, таким образом, список является зависимым от языка. В патенте US 8538909 B2 описан способ выделения временных признаков из последовательностей на естественном языке посредством основанного на правилах подхода.

Другой способ решения рассматриваемой проблемы состоит в сведении всего к разметке последовательности слов. Предполагается, что каждое слово в тексте имеет признаки: лексические, орфографические, грамматические и т.д. На основе списка признаков может осуществляться обучение статистического классификатора. Такой классификатор может назначать метку независимо каждому слову, или обрабатывать подпоследовательности произвольной длины, или обрабатывать все предложение с учетом контекста.

Разметка последовательностей может быть реализована посредством различных классификаторов. Однако самые популярные способы являются Условными Случайными Полями, SVM и Нейронными Сетями.

Для маркировки временных и событийных выражений группой комплекса TERQAS в течение шести месяцев совершенствовался язык TimeML. В 2009 TimeML был принят в качестве стандарта ISO: ISO 24617-1:2009.

Также для разметки последовательностей могут использоваться схемы разметки IO, BIO, BMEWO. Каждая буква в названии схемы задает действующую метку в последовательности: «В» означает «В начале», «I» означает «Внутри», «М» означает «В середине», «W» означает «Во всем», «Е» означает «В конце» и «О» означает «Вне».

Главные проблемы основанного на правилах подхода состоят в следующем:

- обработка только заданных классов временных выражений,

- зависимость от языка и участка текста,

совершенствование системы правил, поддерживающих редкие случаи, занимает много времени.

Проблемы подхода машинного обучения состоят в:

- потребности в размеченных данных для обучения и испытаний. Разметка данных занимает очень много времени,

- потребности в предварительной обработке (например, выделение признаков),

- зависимости от выборки для испытаний.

На сегодняшний день существуют языки, которые не имеют общедоступных вручную размеченных корпусов с временной и событийной разметкой, подходящей для обучения алгоритмов машинного обучения. Таким образом, применение способов машинного обучения для этих языков является трудным. И на сегодняшний день русский язык находится среди этих языков.

В статье Чанга А.X. и Маннинга С. «SUTime: Библиотека для распознавания и нормализации временных выражений» (LREC, с.с. 3735-3740, Европейская Ассоциация Языковых Ресурсов ELRA (2012) (by Chang A.X. and Manning C. «SUTime: A library for recognizing and normalizing time expressions» (LREC, pp. 3735-3740, European Language Resources Association ELRA, 2012)) описывается чистая основанная на правилах система для разметки временных выражений на английском языке.

В статье «Сравнение обучающихся статистически и выведением правил методом индукции систем для автоматической маркировки временных выражений на английском языке» Хорди Поведа, Михаи Сурдеану, Хорди Турмо (В докладе 14-го Международного Симпозиума по Временному Представлению и Рассуждению (TIME 2007), IEEE, с.с. 141-149) («A comparison of statistical and rule-induction learners for automatic tagging of time expressions in English» by Jordi Poveda, Mihai Surdeanu, Jordi Turmo (In Proc. of the 14th International Symposium on Temporal Representation and Reasoning (TIME 2007), IEEE, pp. 141-149)) описана практика использования способов машинного обучения и основанных на правилах способов для выделения временных выражений на английском языке, и дается их сравнение. Описываются типы признаков для классификатора SVM. TimeML используется для разметки выражений.

Результаты использования Условных Случайных Полей в задачах NLP приведены в статье «Модели условных случайных полей для обработки русского языка» Соловьев А.Н., Антонова А.И. (Компьютерная Лингвистика и Интеллектуальные Технологии: Доклады Международной конференции «Диалог 2013», 2013, с.с. 27-43) («Conditional random field models for the processing of Russian» by Soloviev A.N., Antonova A.Y. (Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference "Dialog 2013", 2013, pp. 27-43)). Даются некоторые полезные примеры (задача Распознавания Именованных Объектов, задача Смыслового Анализа) применения основанного на CRF подхода к русскому языку. Для обучения и испытаний использовались вручную размеченные данные.

Известные способы, использующие машинное обучение и основанный на правилах подход, нуждаются в большом количестве предварительно обученных данных, не поддерживают статистический подход для редких случаев и не позволяют использовать лингвистическую интуицию для общих случаев.

Целью настоящего изобретения является предоставление способа, объединяющего основанную на правилах систему для разметки с обучением алгоритма машинного обучения и устранение вышеупомянутых недостатков машинного обучения и основанного на правилах подхода. Дополнительной целью является предоставление способа, который делает возможным совершенствование высококачественной системы для Выделения Временных Выражений для нового языка или нового участка за короткое время.

Технический результат предложенного изобретения заключается в предоставлении возможности маркировки неразмеченных текстовых данных автоматически и затем использования алгоритма машинного обучения для разметки временных выражений в тексте на естественном языке, например на русском языке.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Цель настоящего изобретения достигается за счет того, что предлагается способ выделения временных выражений в текстах на естественном языке, при этом способ содержит этапы, на которых:

- разделяют упомянутый текст на два непересекающихся поднабора: неразмеченных текстовых данных для испытаний и неразмеченных текстовых данных для обучения, при этом поднабор неразмеченных текстовых данных для испытаний является малым поднабором, а поднабор неразмеченных текстовых данных для обучения является большим поднабором;

- вручную размечают неразмеченные текстовые данные для испытаний для того, чтобы получить «золотой» набор;

- совершенствуют список регулярных выражений и механизм для разметки текстовых данных посредством упомянутого списка регулярных выражений;

- выполняют процедуру разработки алгоритма, содержащую следующие этапы, на которых:

(i) размечают неразмеченные текстовые данные для обучения посредством упомянутого механизма и упомянутого списка регулярных выражений, для того чтобы получить грамматически размеченный текст с частичной маркировкой временных выражений;

(ii) обучают алгоритм машинного обучения с использованием текстовых данных для обучения, размеченных на этапе (i);

(iii) размечают неразмеченные текстовые данные для испытаний посредством упомянутого алгоритма машинного обучения, обученного на этапе (ii);

(iv) оценивают качество разметки посредством сравнения результатов разметки, полученных на этапе (iii), с «золотым набором»; и

- в случае если получена предварительно заданная мера качества разметки, выделяют временные выражения, иначе изменяют список регулярных выражений и механизм для разметки текстовых данных посредством упомянутого измененного списка регулярных выражений и повторяют процедуру разработки алгоритма.

В одном варианте осуществления алгоритм машинного обучения является моделью CRF (условного случайного поля) для линейной цепи.

В одном варианте осуществления мера качества разметки является мерой точности, полноты, F-мерой или мерой достоверности. Предварительно заданная мера качества разметки может быть получена, например, когда F-мера достигает предварительно заданной пороговой величины.

В одном варианте осуществления этап разметки неразмеченных текстовых данных для обучения выполняют посредством следующих методов маркировки: IO, BIO или BMEWO.

В одном варианте осуществления этап ручной разметки неразмеченных текстовых данных для испытаний для того, чтобы получить «золотой» набор, и этап совершенствования списка регулярных выражений и механизма для разметки текстовых данных выполняют посредством использования языка маркировки TimeML.

В одном варианте осуществления текст на естественном языке является текстом на русском языке.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Предшествующие варианты осуществления данного изобретения станут с большей готовностью приняты во внимание, а также станут лучше понятыми посредством ссылки на последующее подробное описание при рассмотрении совместно с сопроводительными чертежами, на которых:

Фиг. 1 является схемой способа согласно лучшему варианту осуществления;

Фиг. 2 является схемой модели CRF для разметки временных выражений на русском языке.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

В целом описанное настоящее раскрытие направлено на распознавание временных выражений в текстах на естественном языке.

Предложенный способ является приемлемым для разметки временных выражений в текстовых данных в текстах на естественном языке без повторений (то есть нет никаких совпадающих текстов), например на русском языке. В настоящее время не существует каких-либо общедоступных корпусов русского языка с маркировкой временных выражений, выполненной экспертами (как в случае английского языка). Описание заявленного варианта реализации предложенного способа описывается ниже. Схема способа предложена на Фиг. 1.

Сначала предоставляется корпус текстов на русском языке только с грамматической разметкой. Затем, на этапе 101, корпус текста разделяется на два непересекающихся поднабора: 102 и 103. На этапе 104 поднабор 102 размечается вручную, так что размер данного поднабора является относительно малым. Он содержит размеченные временные выражения и называется «золотым» набором. Поднабор 103 размечается автоматически на этапе 106 и используется для обучения, так что он является большим поднабором. Для объективного испытания поднаборы 102 и 103 выполняются непересекающимися. Согласно комбинаторной теории переобучения (см. «Оценка зависимостей на основе эмпирических данных», Вапник В.Н., Наука, 1979 («Estimation of Dependencies Based on Empirical Data», Vapnik V.N., Nauka, 1979)), чем больше размер поднабора для обучения, тем меньше вероятность его переобучения; чем больше размер поднабора для испытаний, тем более достоверная оценка качества алгоритма будет получена. Не существует каких-либо ограничений на размеры упомянутых поднаборов, однако логично использовать большой поднабор для обучения и оставшуюся часть - для испытаний.

На этапе 105-1 совершенствуется список регулярных выражений, которые используются для разметки поднабора 103. Эти регулярные выражения должны покрывать некоторые виды временных выражений. Он используется для разметки конкретных (не всех) видов временных выражений посредством механизма для разметки текстовых данных посредством данного списка регулярных выражений. Таким образом, данный механизм и список регулярных выражений, усовершенствованный на этапе 105-1, используются для разметки поднабора 103 на этапе 106. Результатом этапа 106 является поднабор грамматически размеченных текстов с частичной маркировкой временных выражений. На этапе 107 поднабор 103 используется в качестве набора для обучения для алгоритма машинного обучения. В одном варианте осуществления используется модель CRF (условного случайного поля) для линейной цепи, несмотря на то что выбор алгоритма не важен. Граф, кодирующий зависимости в CRF, изображен на Фиг. 2. 201 является последовательностью пометок для предложения длиной s. 202 является последовательностью грамматических меток слов в предложении из корпуса.

На этапе 108 поднабор 102 размечается посредством алгоритма машинного обучения с помощью модели, обученной на этапе 107. Качество разметки оценивается (этап 109) по «золотому» набору из этапа 104: таким образом вычисляются меры точности, полноты, F-мера и мера достоверности. Выражения, не покрытые списком регулярных выражений (этап 105-1), и последовательности слов, ложно размеченных в качестве временных, также отыскиваются и анализируются на данном этапе. Анализ разметки результатов по «золотому» набору включает в себя нахождение ошибок при разметке; нахождение того, какие виды временных выражений не покрыты регулярными выражениями и какие последовательности слов ложно размечены в качестве временных выражений. После анализа изменяется список регулярных выражений (этап 105-2) и этапы 106, 107, 108 и 109 повторяются. Это является итерационной процедурой, и она останавливается, когда на этапе 109 получается предварительно заданный достаточный уровень качества разметки по «золотому» набору. Например, итеративный процесс останавливается, когда F-мера по «золотому» набору составляет ~94%. Это улучшает качество разметки посредством регулярных выражений «золотого» набора на ~1%.

Данная процедура используется для одновременного улучшения обучаемого алгоритма и увеличения количества размеченных данных. В результате данной итерационной процедуры получаются основанная на правилах система для выделения временных выражений, алгоритм машинного обучения, решающий ту же самую задачу, малый набор текстов с временными выражениями, маркированными экспертами, и большие текстовые данные с автоматически размеченными временными выражениями.

Дополнительно следует отметить, что заявляемое изобретение является промышленно применимым, а именно способ может использоваться для подготовки данных для обучения алгоритмов в задачах NLP, в извлечении информации из текстовых данных. Таким образом, оно может быть частью автоматизированной IT-системы, применяемой в медицине, спорте, развлечениях и т.д.

Раскрытый способ обработки текста подходит для любого естественного языка. Однако представляется, что способ является самым подходящим для применения и релевантным для языков со сложной морфологией и обильной синонимией. Способ также релевантен для любого естественного языка при маркировке большого количества данных, так как маркировка реализуется автоматически.

Нужно подчеркнуть, что в вышеописанные варианты осуществления могут быть внесены многие изменения и модификации, элементы которых, как следует понимать, находятся среди других приемлемых примеров. Подразумевается, что все такие модификации и вариации включаются в данном документе в объем данного раскрытия и защищаются следующей формулой изобретения.


ВЫДЕЛЕНИЕ ВРЕМЕННЫХ ВЫРАЖЕНИЙ ДЛЯ ТЕКСТОВ НА ЕСТЕСТВЕННОМ ЯЗЫКЕ
ВЫДЕЛЕНИЕ ВРЕМЕННЫХ ВЫРАЖЕНИЙ ДЛЯ ТЕКСТОВ НА ЕСТЕСТВЕННОМ ЯЗЫКЕ
ВЫДЕЛЕНИЕ ВРЕМЕННЫХ ВЫРАЖЕНИЙ ДЛЯ ТЕКСТОВ НА ЕСТЕСТВЕННОМ ЯЗЫКЕ
Источник поступления информации: Роспатент

Showing 731-740 of 1,295 items.
04.07.2018
№218.016.6ab0

Устройство формирования изображений (варианты)

Настоящее изобретение относится к области техники формирования изображения. Устройство содержит дисплей, первый поляризатор, первую фазовую пластинку, первый оптический элемент, вторую фазовую пластинку и второй оптический элемент. Первая фазовая пластинка расположена после первого поляризатора...
Тип: Изобретение
Номер охранного документа: 0002659577
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6c4a

Способ и устройство для кодирования и декодирования вектора движения на основании сокращенных предсказателей-кандидатов вектора движения

Изобретение относится к области кодирования/декодирования изображений. Технический результат – повышение коэффициента сжатия при кодировании/декодировании изображений. Способ определения вектора движения для текущего блока содержит: декодирование информации о разности векторов движения для...
Тип: Изобретение
Номер охранного документа: 0002659733
Дата охранного документа: 03.07.2018
06.07.2018
№218.016.6c9f

Способ управления портативным устройством и портативное устройство для него

Изобретение относится к области средств управления портативными устройствами, таких как вводные устройства, перемещаемые пользователем, а именно к управлению портативным устройством на основе вариации магнитного поля посредством съемного пера, присоединенного к портативному устройству....
Тип: Изобретение
Номер охранного документа: 0002660141
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6d53

Способ и устройство для кодирования видео, а также способ и устройство для декодирования видео, сопровождаемого внутренним прогнозированием

Изобретение относится к области декодирования видео. Технический результат – повышение эффективности декодирования видео за счет понижения сложности синтаксического анализа. Устройство для декодирования видео содержит: модуль определения возможных вариантов режимов внутреннего прогнозирования,...
Тип: Изобретение
Номер охранного документа: 0002660640
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6d58

Способ обновления параметров для энтропийного кодирования и декодирования уровня коэффициентов преобразования, а также устройство энтропийного кодирования и устройство энтропийного декодирования уровня коэффициентов преобразования с его использованием

Изобретение относится к технологиям кодирования/декодирования видеоданных. Техническим результатом является уменьшение числа битов, сформированных при кодировании. Предложен способ декодирования видео. Способ содержит этап, на котором получают строку бинов, соответствующую информации уровня...
Тип: Изобретение
Номер охранного документа: 0002660639
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6d64

Устройство и способ установления или удаления защиты на контенте

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении безопасности данных. Способ содержит этапы, на которых: сохраняют множество фрагментов биометрической информации в памяти электронного устройства, отображают на дисплее электронного устройства экран...
Тип: Изобретение
Номер охранного документа: 0002660617
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6d7d

Устройство и способ отображения информации устройства пользователя

Группа изобретений относится к средствам отображения информации. Технический результат – одновременное отображение разнесенных на расстоянии элементов информации документа. Для этого в различных вариантах осуществления способ может содержать этап, на котором предоставляют информацию через...
Тип: Изобретение
Номер охранного документа: 0002660642
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6daf

Способ кодирования видео с регулированием битовой глубины для преобразования с фиксированной запятой и устройство для него, а также способ декодирования видео и устройство для него

Изобретение относится к кодированию и декодированию видео. Технический результат изобретения заключается в возможности предотвращения переполнения выходных данных при вспомогательных операциях процесса декодирования. Устройство декодирования видео содержит: приемник для получения...
Тип: Изобретение
Номер охранного документа: 0002660613
Дата охранного документа: 06.07.2018
08.07.2018
№218.016.6dbf

Мультидисплейная система, электронное устройство и способ вывода содержимого

Изобретение относится к области вывода синхронизированного содержимого на дисплей. Техническим результатом является повышение точности вывода синхронизированного содержимого на дисплей в соответствии с близостью или прикосновением пользователя. Мультидисплейная система, содержащая первый...
Тип: Изобретение
Номер охранного документа: 0002660634
Дата охранного документа: 06.07.2018
12.07.2018
№218.016.701c

Способ и устройство измерения помех для использования в распределенной антенной системе

Изобретение относится к технике беспроводной связи и может быть использовано в распределенной антенной системе (DAS). Способ поддержки, посредством точки передачи, измерения помех, оказывающих влияние на терминал в распределенной антенной системе (DAS), содержит этапы, на которых идентифицируют...
Тип: Изобретение
Номер охранного документа: 0002660935
Дата охранного документа: 11.07.2018
Showing 661-666 of 666 items.
04.04.2018
№218.016.35cd

Способ и устройство для рендеринга звукового сигнала и компьютерно-читаемый носитель информации

Настоящее изобретение относится к способу и устройству для рендеринга аудиосигнала и, более конкретно, к способу рендеринга и устройству для понижающего микширования (микширования с понижением числа каналов) многоканального сигнала в соответствии с типом рендеринга. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002646320
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.362a

Способ и устройство для рендеринга акустического сигнала и машиночитаемый носитель записи

Изобретение относится к обработке аудиосигнала аудиоизображения. Технический результат – уменьшение искажения аудиоизображения, когда угол подъема входного канала отличается от стандартного угла подъема входного канала. Способ для рендеринга акустического сигнала содержит этапы: приема...
Тип: Изобретение
Номер охранного документа: 0002646337
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.369d

Способ и система представления приложений терминала мобильной связи

Изобретение относится к способу и системе представления приложений терминала мобильной связи. Технический результат заключается в расширении арсенала средств. Предлагаются способ и система представления приложений, причем способ и система включают в себя отображение карты на устройстве...
Тип: Изобретение
Номер охранного документа: 0002646359
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.36b1

Устройство и способ передачи и приема пакета с прямой коррекцией ошибок

Изобретение относится к области связи для широковещательной передачи данных. Технический результат заключается в повышении эффективности передачи пакета в системе мультимедийных услуг. Технический результат достигается за счет конфигурирования исходного пакета с коррекцией ошибок посредством...
Тип: Изобретение
Номер охранного документа: 0002646346
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3750

Микроволновая печь

Предложена микроволновая печь, имеющая усовершенствованную конструкцию, которая позволяет равномерно нагревать пищевые продукты. Микроволновая печь содержит: корпус, включающий в себя варочную камеру (20), имеющую нижнюю поверхность (21), по меньшей мере одну первую отражательную часть (110),...
Тип: Изобретение
Номер охранного документа: 0002646616
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3a70

Способ определения профиля пользователя мобильного устройства на самом мобильном устройстве и система демографического профилирования

Изобретение относится к определению демографического профиля пользователя мобильного устройства на самом мобильном устройстве, хранящем обученную мультиязычную тематическую модель и обученную демографическую модель. Технический результат – повышение защиты конфиденциальных данных пользователя...
Тип: Изобретение
Номер охранного документа: 0002647661
Дата охранного документа: 16.03.2018
+ добавить свой РИД