×
20.06.2016
216.015.48ab

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕНЗОРА ИНЕРЦИИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002587762
Дата охранного документа
20.06.2016
Аннотация: Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные относительно КА солнечные батареи перпендикулярно указанной оси, активной стороной к Солнцу. Выполняют закрутку КА вокруг данной оси с угловой скоростью не менее 2°/c. Измеряют угловую скорость КА, ток солнечных батарей и угол между осью закрутки и направлением на Солнце. При достижении этим углом значения не менее 10° определяют тензор инерции КА по измеренным значениям угловой скорости КА и тока солнечных батарей. Технический результат изобретения заключается в повышении надёжности определении тензора инерции КА, в т.ч. при отсутствии на его борту инерционных исполнительных органов.
Основные результаты: Способ определения тензора инерции космического аппарата, включающий инерциальную ориентацию и развороты космического аппарата в процессе определения тензора инерции, отличающийся тем, что при совпадении направления на Солнце с плоскостью орбиты космического аппарата совмещают строительную ось oy, соответствующую максимальному моменту инерции космического аппарата, с плоскостью орбиты и направлением на Солнце, выставляя в направлении Солнца активную сторону неподвижных солнечных батарей, перпендикулярных строительной оси, соответствующей максимальному моменту инерции аппарата, выполняют закрутку космического аппарата вокруг выставленной оси с угловой скоростью Ω≥2°/с, измеряют угловую скорость космического аппарата, ток солнечных батарей и угол δ между выставленной осью oy и направлением на Солнце и при достижении угла δ значения δ≥10° определение тензора инерции космического аппарата производят по измеренным значениям угловой скорости и тока солнечных батарей.

Изобретение относится к космической технике и может быть использовано для уточнения массово-инерционных характеристик космических аппаратов (КА).

Тензор инерции любого твердого тела является важной характеристикой для управления его движением. Поэтому был разработан ряд способов для определения тензора инерции тела, описанных, например, в [1] (Способ определения тензора инерции и координат центра масс тела и устройство для его осуществления, патент RU 2348020 C1). В способе-аналоге [1] телу сообщается заданное движение и по измерениям параметров движения определяется тензор инерции тела. Главный недостаток способа [1] и других аналогичных способов заключается в отсутствии возможности их применения для определения тензора инерции КА в полете.

Вместе с тем, следует отметить, что тензор инерции меняется в полете КА. Это изменение происходит за счет расходования топлива КА в полете, пристыковки и отстыковки от КА новых блоков и элементов, перемещения грузов внутри пилотируемого КА космонавтами и т.д. Поэтому тензор инерции должен определяться в полете КА, т.к. он является важной характеристикой для управления движением КА. Особенно важно точное знание рассогласования главных центральных осей инерции КА и строительных осей КА, т.к. номинально двигатели для управления движением КА устанавливаются обычно относительно строительных осей аппарата. При возникновении нештатного рассогласования за счет указанных причин между строительными осями КА и его главными осями инерции возникнут серьезные проблемы для управления движением КА.

Для определения тензора инерции КА в полете был предложен способ [2] (Севастьянов Н.Н., Бранец В.Н., Банит Ю.Р., Беляев М.Ю., Сазонов В.В. «Определение тензора инерции геостационарных спутников «Ямал» по телеметрической информации». Препринт ИПМ им. М.В. Келдыша №17, 2006 г.). Предложенный способ [2], взятый авторами за прототип, включает инерциальную ориентацию и развороты КА и измерение суммарного кинетического момента маховиков. При изменении ориентации КА путем его разворотов по измерениям суммарного кинетического момента маховиков (инерционных исполнительных органов) определяется тензор инерции КА в полете.

Недостаток способа-прототипа связан с низкой точностью определения тензора инерции КА и необходимостью использования измерений от инерционных исполнительных органов (ИИО) [2]. В то же время многие КА не имеют в своем составе ИИО. Например, транспортный грузовой корабль (ТГК) «Прогресс», являющийся основным в программе МКС, не имеет в своем составе ИИО. Вместе с тем, за счет перемещения грузов космонавтами внутри ТГК «Прогресс» и расхода большого количества топлива на ТГК его тензор инерции меняется в процессе полета. Особенно важно знание углового рассогласования главных осей инерции ТГК и его строительных осей, т.к. двигатели ориентации и коррекции ТГК установлены относительно строительных осей корабля.

Задачей, на решение которой направлено настоящее изобретение, является определение тензора инерции КА в полете.

Технический результат предлагаемого изобретения заключается в надежном определении тензора инерции космического аппарата даже при отсутствии на его борту ИИО.

Технический результат достигается тем, что в способе определения тензора инерции космического аппарата, включающем инерциальную ориентацию и развороты космического аппарата в процессе определения тензора инерции, при совпадении направления на Солнце с плоскостью орбиты космического аппарата совмещают строительную ось oy2, соответствующую максимальному моменту инерции космического аппарата, с плоскостью орбиты и направлением на Солнце, выставляя в направлении Солнца активную сторону неподвижных солнечных батарей, перпендикулярных строительной оси, соответствующей максимальному моменту инерции аппарата, выполняют закрутку космического аппарата вокруг выставленной оси с угловой скоростью Ω2≥2°/с, измеряют угловую скорость космического аппарата, ток солнечных батарей и угол δ между выставленной осью oy2 и направлением на Солнце и при достижении угла δ значения δmax≥10° определение тензора инерции космического аппарата производят по измеренным значениям угловой скорости и тока солнечных батарей.

За счет выполнения предлагаемых действий определение тензора инерции КА определяется надежно даже при отсутствии на борту КА ИИО. Действия способа обеспечивают слабовозмущенное движение КА на интервале времени определения тензора инерции КА. Это позволяет надежно определять тензор инерции КА даже при отсутствии на его борту ИИО. На угловое движение КА оказывают влияние, в основном, гравитационный и аэродинамический возмущающие моменты, причем основное влияние на большинство КА оказывает гравитационный момент.

За счет совмещения строительной оси КА oy2, соответствующей максимальному моменту инерции КА, с плоскостью орбиты и выполнения закрутки КА вокруг выставленной оси с угловой скоростью Ω2≥2°/с угловое движение КА можно считать слабовозмущенным. Это связано с тем, что при такой ориентации действующий на КА гравитационный момент будет периодически менять знак. Панели солнечных батарей (СБ) при угловом движении КА будут перпендикулярны вектору угловой скорости Ω2 и не будут создавать сопротивления за счет вращения вокруг оси oy2. За счет орбитального движения КА будет возникать аэродинамический момент, периодически меняющий знак. Поэтому угловое движение КА можно считать слабовозмущенным до достижения измеряемого угла значения δmax≥10°. Активная сторона панелей СБ выставляется на Солнце. Это обеспечит максимальный приход электроэнергии от СБ.

Тензор инерции космического аппарата в момент достижения измеряемого угла δ значения δmax≥10° определяют по измерениям угловой скорости космического аппарата, току солнечных батарей минимизацией функционала

Ф=3NlnФΩ+МlnФI,

,

,

на решениях системы уравнений (уравнений Эйлера, записанных в безразмерной форме)

, , ,

где , , ,

ω1, ω2, ω3 - компоненты угловой скорости на главные центральные оси инерции космического аппарата;

I1, I2, I3 - моменты инерции космического аппарата;

в - элементы матрицы перехода между системами координат, образованными строительными осями и главными центральными осями инерции космического аппарата;

- приближенные измеренные значения компонент угловой скорости в строительной системе координат;

Im - измеренное значение тока в момент времени ;

I0 - максимально возможный ток солнечных батарей;

Δ - косинус угла между строительной осью оу2 и направлением на Солнце.

При минимизации функционала Ф для определения величин µ, µ′ и виспользуются методы Марквардта и Гаусса-Ньютона [3].

Наиболее ценным для управления движением КА является точное знание элементов матрицы в. Это обеспечивается выполнением всей совокупности действий и приемов способа.

Определив истинное положение главных центральных осей инерции КА, можно осуществлять управление с учетом их положения относительно строительных осей КА. Закрутку КА на Солнце можно, например, выполнять не вокруг строительной оси, перпендикулярной плоскости панелей солнечных батарей, а вокруг главной центральной оси инерции КА, ей ближайшей. Это повысит стабильность вращения и увеличит приход электрической энергии.

В настоящее время технически все готово для реализации предложенного способа, например, на ТГК «Прогресс» или других КА. На ТГК «Прогресс» отсутствуют ИИО. Однако система управления ТГК «Прогресс» позволяет выполнять инерциальную ориентацию, развороты и закрутку КА. На ТГК измеряются угловые скорости в строительной системе координат корабля, ток от СБ, направление на Солнце, центр Земли и т.д. Для определения необходимых направлений и вычислений ТГК снабжен бортовой вычислительной системой БВС.

Предложенный способ позволяет за счет выполнения отличительных действий и приемов надежно определять тензор инерции КА даже при отсутствии на его борту ИИО.

ЛИТЕРАТУРА

1. Способ определения тензора инерции и координат центра масс тела и устройство для его осуществления, патент RU 2348020 C1.

2. Севастьянов Н.Н., Бранец В.Н., Банит Ю.Р., Беляев М.Ю., Сазонов В.В. «Определение тензора инерции геостационарных спутников «Ямал» по телеметрической информации». Препринт ИПМ им. М.В. Келдыша №17, 2006 г.

3. Бард Й. Нелинейное оценивание параметров. М., Статистика, 1979.

Способ определения тензора инерции космического аппарата, включающий инерциальную ориентацию и развороты космического аппарата в процессе определения тензора инерции, отличающийся тем, что при совпадении направления на Солнце с плоскостью орбиты космического аппарата совмещают строительную ось oy, соответствующую максимальному моменту инерции космического аппарата, с плоскостью орбиты и направлением на Солнце, выставляя в направлении Солнца активную сторону неподвижных солнечных батарей, перпендикулярных строительной оси, соответствующей максимальному моменту инерции аппарата, выполняют закрутку космического аппарата вокруг выставленной оси с угловой скоростью Ω≥2°/с, измеряют угловую скорость космического аппарата, ток солнечных батарей и угол δ между выставленной осью oy и направлением на Солнце и при достижении угла δ значения δ≥10° определение тензора инерции космического аппарата производят по измеренным значениям угловой скорости и тока солнечных батарей.
Источник поступления информации: Роспатент

Showing 351-360 of 377 items.
24.05.2019
№219.017.5f94

Релейный регулятор

Изобретение относится к технике автоматического управления, в частности к технике формирования управляющих сигналов. Технический результат заключается в повышении надежности. Релейный регулятор содержит в каждом из (2m+1) канале аналого-цифровой преобразователь (АЦП), запоминающее устройство...
Тип: Изобретение
Номер охранного документа: 0002342690
Дата охранного документа: 27.12.2008
24.05.2019
№219.017.5fd5

Устройство для стабилизации температуры изделия

Относится к областям электротехники, электроники и теплотехники. Устройство для стабилизации температуры изделия содержит связанные между собой цепи питания, последовательно соединенные датчик температуры, усилитель, подключенные ко второй цепи питания, и транзистор, выход которого совместно с...
Тип: Изобретение
Номер охранного документа: 0002359309
Дата охранного документа: 20.06.2009
29.05.2019
№219.017.6864

Устройство закрытия и последовательного открытия крышки

Изобретение относится к области космической техники, а именно к устройствам, обеспечивающим открытие или закрытие входа в герметичные отсеки космических аппаратов. Устройство закрытия и последовательного открытия крышки содержит установленный на крышку привод с закрепленной на крышке рукояткой,...
Тип: Изобретение
Номер охранного документа: 0002457161
Дата охранного документа: 27.07.2012
29.05.2019
№219.017.6868

Способ заправки жидким кислородом баков окислителя ракетно-космической системы (варианты)

Изобретения относятся к методам и средствам заправки-слива топлива ракетно-космической системы, применяемым на наземных стартовых комплексах. Указанная система включает в себя многоступенчатую ракету-носитель (РН) и космический разгонный блок (РБ). Бак окислителя верхней ступени РН заправляется...
Тип: Изобретение
Номер охранного документа: 0002455206
Дата охранного документа: 10.07.2012
09.06.2019
№219.017.76b9

Способ измерения объема закрытых и открытых пор пеноматериалов и устройство для его осуществления

Использование: в контрольно-измерительной технике и может найти применение в криогенной технике при отработке технологии изготовления и контроля качества нанесения криогенной тепловой изоляции из жестких ячеистых пеноматериалов, в частности жестких пенополиуретанов. Сущность: способ...
Тип: Изобретение
Номер охранного документа: 0002263893
Дата охранного документа: 10.11.2005
09.06.2019
№219.017.798d

Коммутатор напряжения с защитой от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току. Технический результат заключается в увеличении надежности устройства за счет исключения режима стабилизации по току при любых видах и режимах...
Тип: Изобретение
Номер охранного документа: 0002397612
Дата охранного документа: 20.08.2010
09.06.2019
№219.017.7b77

Космический аппарат для спуска с орбиты искусственного спутника земли и способ его спуска с орбиты искусственного спутника земли

Изобретение относится к ракетно-космической технике. Космический аппарат (КА) содержит теплоизолированные корпус с затупленной носовой частью, стреловидное крыло, аэродинамические и газодинамические органы стабилизации и управления по каналам тангажа, крена и рысканья, в том числе...
Тип: Изобретение
Номер охранного документа: 0002334656
Дата охранного документа: 27.09.2008
09.06.2019
№219.017.7d6b

Рабочее колесо осевого вентилятора

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Техническим результатом от использования изобретения является повышение технологичности и надежности. Указанный технический результат достигается в...
Тип: Изобретение
Номер охранного документа: 0002422681
Дата охранного документа: 27.06.2011
09.06.2019
№219.017.7d6e

Осевой вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий космической техники. Техническим результатом, достигаемым с помощью заявленного изобретения, является повышение технологичности. Указанный технический результат достигается в осевом...
Тип: Изобретение
Номер охранного документа: 0002422680
Дата охранного документа: 27.06.2011
09.06.2019
№219.017.7dcf

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов. Сущность: способ определения уровня диэлектрического вещества заключается в формировании синусоидальных напряжений на...
Тип: Изобретение
Номер охранного документа: 0002456552
Дата охранного документа: 20.07.2012
Showing 321-323 of 323 items.
20.04.2023
№223.018.4ad8

Способ определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют в наземных условиях биомеханические параметры двигательной активности оператора, включая...
Тип: Изобретение
Номер охранного документа: 0002777477
Дата охранного документа: 04.08.2022
23.05.2023
№223.018.6cba

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления ПАН...
Тип: Изобретение
Номер охранного документа: 0002771488
Дата охранного документа: 05.05.2022
17.06.2023
№223.018.7ee6

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления снабжен...
Тип: Изобретение
Номер охранного документа: 0002772766
Дата охранного документа: 25.05.2022
+ добавить свой РИД