×
20.06.2016
216.015.48a2

СПОСОБ ОПРЕДЕЛЕНИЯ ТЕНЗОРА ИНЕРЦИИ КОСМИЧЕСКОГО АППАРАТА В ПОЛЕТЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002587764
Дата охранного документа
20.06.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси с угловой скоростью не менее 2°/с. Измеряют в системе строительных осей КА направления на регистрируемые звезды и угловую скорость КА до определённого момента времени. Последний зависит от времени закрутки КА и интервала движения КА, слабо возмущенного действием гравитационного градиента и вычисляемого с некоторым коэффициентом надежности. Опознают указанные звезды и определяют в ИСК направления на них. Тензор инерции КА определяют по указанным направлениям на звезды и значениям угловой скорости КА. Технический результат изобретения заключается в повышении достоверности определении тензора инерции КА, в т.ч. при отсутствии на его борту инерционных исполнительных органов.
Основные результаты: Способ определения тензора инерции космического аппарата в полете, включающий инерциальную ориентацию и развороты космического аппарата, отличающийся тем, что ориентируют космический аппарат, стабилизируя в инерциальной системе координат его строительную ось, ближайшую к оси, соответствующей максимальному моменту инерции, выполняют закрутку космического аппарата вокруг этой строительной оси с угловой скоростью Ω не менее 2 град/с, измеряют в строительной системе координат космического аппарата направления на регистрируемые звезды и угловую скорость космического аппарата до момента времени T = T+ Δt, , где T - момент времени выполнения закрутки космического аппарата,Δt - интервал времени слабо возмущенного движения космического аппарата,Ω - угловая скорость закрутки вокруг строительной оси, ближайшей оси максимального момента инерции,R - радиус орбиты,µ - гравитационный параметр Земли,K - коэффициент надежности, опознают зарегистрированные звезды, определяют в инерциальной системе координат направления на опознанные звезды и определяют тензор инерции космического аппарата по измеренным и определенным на интервале времени Δt направлениям на опознанные звезды и измерениям угловой скорости космического аппарата.
Реферат Свернуть Развернуть

Изобретение относится к космической технике и может быть использовано для уточнения массово-инерционных характеристик космических аппаратов (КА).

Тензор инерции любого твердого тела является важной характеристикой для управления его движением. Поэтому был разработан ряд способов для определения тензора инерции тела, описанных, например, в [1] (Способ определения тензора инерции и координат центра масс тела и устройство для его осуществления, патент RU 2348020 C1). В способе-аналоге [1] телу сообщается заданное движение и по измерениям параметров движения определяется тензор инерции тела. Главный недостаток способа [1] и других аналогичных способов заключается в отсутствии возможности их применения для определения тензора инерции КА в полете.

Вместе с тем, следует отметить, что тензор инерции меняется в полете КА. Это изменение происходит за счет расходывания топлива КА в полете, пристыковки и отстыковки от КА новых блоков и элементов, перемещения грузов внутри пилотируемого КА космонавтами и т.д. Поэтому тензор инерции должен определяться в полете КА, т.к. он является важной характеристикой для управления движением КА. Особенно важно точное знание рассогласования главных центральных осей инерции КА и строительных осей КА, т.к. номинально двигатели для управления движением КА устанавливаются обычно относительно строительных осей аппарата. При возникновении нештатного рассогласования за счет указанных причин между строительными осями КА и его главными осями инерции возникнут серьезные проблемы для управления движением КА.

Для определения тензора инерции КА в полете был предложен способ [2] (Севастьянов Н.Н., Бранец В.Н., Банит Ю.Р., Беляев М.Ю., Сазонов В.В. «Определение тензора инерции геостационарных спутников «Ямал» по телеметрической информации. Препринт ИПМ им. М.В. Келдыша №17, 2006 г.). Предложенный способ [2], взятый авторами за прототип, включает инерциальную ориентацию и развороты КА и измерение суммарного кинетического момента маховиков. При изменении ориентации КА путем его разворотов, по измерениям суммарного кинетического момента маховиков (инерционных исполнительных органов) определяется тензор инерции КА в полете.

Недостаток способа-прототипа связан с низкой точностью определения тензора инерции КА и необходимостью использования измерений от инерционных исполнительных органов (ИИО) [2]. В то же время многие КА не имеют в своем составе ИИО. Например, транспортный грузовой корабль (ТГК) «Прогресс», являющийся основным транспортным грузовым кораблем в программе МКС, не имеет в своем составе ИИО. Вместе с тем, за счет перемещения грузов космонавтами внутри ТГК «Прогресс» и расхода большого количества топлива на ТГК, его тензор инерции меняется в процессе полета. Особенно важно знание углового рассогласования главных осей инерции ТГК и его строительных осей, т.к. двигатели ориентации и коррекции ТГК установлены относительно строительных осей корабля.

Задачей, на решение которой направлено настоящее изобретение, является определение тензора инерции КА в полете.

Технический результат предлагаемого изобретения заключается в надежном определении тензора инерции космического аппарата даже при отсутствии на его борту ИИО.

Технический результат достигается тем, что в способе определения тензора инерции космического аппарата в полете, включающем инерциальную ориентацию и развороты космического аппарата, ориентируют космический аппарат, стабилизируя в инерциальной системе координат его строительную ось, ближайшую оси, соответствующей максимальному моменту инерции, выполняют закрутку космического аппарата вокруг этой строительной оси с угловой скоростью Ω2 не менее 2°/с, измеряют в строительной системе координат космического аппарата направления на регистрируемые звезды и угловую скорость космического аппарата до момента времени

T=T0+Δt, где ,

где T0 - момент времени выполнения закрутки космического аппарата;

Δt - интервал времени слабо возмущенного движения космического аппарата;

Ω2 - угловая скорость закрутки вокруг строительной оси, ближайшей оси максимального момента инерции;

R - радиус орбиты;

µгр - гравитационный параметр Земли;

K - коэффициент надежности,

опознают зарегистрированные звезды, определяют в инерциальной системе координат направления на опознанные звезды, и определяют тензор инерции космического аппарата по измеренным и определенным на интервале времени Δt направлениям на опознанные звезды и измерениям угловой скорости космического аппарата.

За счет выполнения предлагаемых действий определение тензора инерции КА осуществляется надежно и даже при отсутствии на борту КА ИИО. Действия способа обеспечивают слабо возмущенное движение КА на интервале времени Δt. Это позволяет надежно определять тензор инерции КА даже при отсутствии на его борту ИИО. На угловое движение КА оказывают влияние, в основном, гравитационный и аэродинамический возмущающие моменты, причем основное влияние на большинство КА оказывает гравитационный момент.

Соотношение для Δt получено для КА, имеющего вытянутую форму, с учетом действия на него гравитационного возмущающего момента. При выводе соотношения для Δt учитывается максимальное значение гравитационного момента, действующего вокруг поперечной оси КА. Для повышения надежности обеспечения слабо возмущенного движения на интервале времени Δt вводится специальный коэффициент надежности К. Коэффициент надежности может быть взят равным, например, 10. Для ТГК «Прогресс», например, Δt оказывается равным нескольким десяткам минут. На этом интервале времени угловое движение КА считается невозмущенным. Тензор инерции космического аппарата в этом случае по измеренным и определенным параметрам определяют минимизацией функционала

,

на решениях системы уравнений (уравнений Эйлера, записанных в безразмерном виде)

, , ,

где: , , ,

ω1, ω2, ω3 - компоненты угловой скорости на главные центральные оси инерции;

I1, I2, I3 - моменты инерции космического аппарата;

в - элементы матрицы перехода между системами координат, образованными строительными осями и главными центральными осями инерции космического аппарата;

- приближенные измеренные значения компонент угловой скорости в строительной системе координат.

Минимизация ФΩ является первым этапом определения искомых величин и осуществляется методом Гаусса-Ньютона.

ФΩ рассматривается как функция набора из восьми параметров ωi(tо) (i=1, 2, 3), µ, µ′, γ, α, β. Углы γ, α, β задают положение строительной системы координат оу1у2у3 относительно системы координат ох1х2х3, образованной главными центральными осями инерции КА.

Система оу1у2у3 может быть переведена в систему ох1х2х3 тремя последовательными поворотами: 1) на угол α вокруг оси оу2, 2) на угол β вокруг новой оси оу3, 3) на угол γ вокруг новой оси оу1, совпадающей с осью ох1.

Хотя приведенные уравнения Эйлера имеют решения, выражаемые через эллиптические функции, при минимизации ФΩ, как показывает практический опыт, целесообразно их интегрировать численно.

Как показывает опыт обработки информации при решении аналогичных задач минимизации, искомые параметры практически всегда могут быть определены при минимизации функционала ФΩ. Это обусловлено в том числе тем обстоятельством, что на рассматриваемом интервале обработки угловое движение КА можно считать невозмущенным.

На втором этапе для повышения надежности определения параметров тензора инерции КА минимизируется функционал, составленный аналогично по определенным и измеренным направлениям на звезду.

Наиболее ценным для управления движением КА является точное знание элементов матрицы вik (т.е. углов γ, α, β). Это обеспечивается выполнением всей совокупности действий и приемов способа.

Определив истинное положение главных центральных осей инерции КА, можно осуществлять управление с учетом их положения относительно строительных осей КА. Закрутку КА на Солнце можно, например, выполнять не вокруг строительной оси, перпендикулярной плоскости панелей солнечных батарей, а вокруг главной центральной оси инерции КА, ей ближайшей. Это повысит стабильность вращения и увеличит приход электрической энергии.

В настоящее время технически все готово для реализации предложенного способа, например, на ТГК «Прогресс» или других КА. На ТГК «Прогресс» отсутствуют ИИО. Однако система управления ТГК «Прогресс» позволяет выполнять инерциальную ориентацию, развороты и закрутку КА. Для измерения направлений на звезды может использоваться звездный датчик типа БОКЗ или ОЗД. Звезды, попавшие в поле зрения датчика, регистрируются в зависимости от заложенной в прибор яркости (могут регистрироваться звезды, например, до 6-ой звездной величины). Опознавание попавших в его поле зрения звезд осуществляется автоматически (по яркости звезд и угловому расстоянию между зарегистрированными звездами). На ТГК измеряются угловые скорости в строительной системе координат корабля, направление на Солнце (которое, строго говоря, является звездой). Для определения необходимых направлений и вычислений, ТГК снабжен бортовой вычислительной системой БВС.

Предложенный способ позволяет за счет выполнения отличительных действий и приемов надежно определять тензор инерции КА даже при отсутствии на его борту ИИО.

ЛИТЕРАТУРА

1. Способ определения тензора инерции и координат центра масс тела и устройство для его осуществления, патент RU 2348020 С 1.

2. Севастьянов Н.Н., Бранец В.Н., Банит Ю.Р., Беляев М.Ю., Сазонов В.В. «Определение тензора инерции геостационарных спутников «Ямал» по телеметрической информации. Препринт ИПМ им. М.В. Келдыша №17, 2006 г.

Способ определения тензора инерции космического аппарата в полете, включающий инерциальную ориентацию и развороты космического аппарата, отличающийся тем, что ориентируют космический аппарат, стабилизируя в инерциальной системе координат его строительную ось, ближайшую к оси, соответствующей максимальному моменту инерции, выполняют закрутку космического аппарата вокруг этой строительной оси с угловой скоростью Ω не менее 2 град/с, измеряют в строительной системе координат космического аппарата направления на регистрируемые звезды и угловую скорость космического аппарата до момента времени T = T+ Δt, , где T - момент времени выполнения закрутки космического аппарата,Δt - интервал времени слабо возмущенного движения космического аппарата,Ω - угловая скорость закрутки вокруг строительной оси, ближайшей оси максимального момента инерции,R - радиус орбиты,µ - гравитационный параметр Земли,K - коэффициент надежности, опознают зарегистрированные звезды, определяют в инерциальной системе координат направления на опознанные звезды и определяют тензор инерции космического аппарата по измеренным и определенным на интервале времени Δt направлениям на опознанные звезды и измерениям угловой скорости космического аппарата.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕНЗОРА ИНЕРЦИИ КОСМИЧЕСКОГО АППАРАТА В ПОЛЕТЕ
Источник поступления информации: Роспатент

Showing 51-60 of 377 items.
27.02.2014
№216.012.a6d0

Установка для электролиза воды под давлением и способ ее эксплуатации

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и...
Тип: Изобретение
Номер охранного документа: 0002508419
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a708

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в составе систем терморегулирования изделий космической техники. Осевой вентилятор содержит корпус, спрямляющий аппарат в виде втулки с лопатками, размещенную внутри втулки гильзу с закрепленным в ней электродвигателем и рабочим колесом, а...
Тип: Изобретение
Номер охранного документа: 0002508475
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9f9

Модель стационарного плазменного двигателя

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры...
Тип: Изобретение
Номер охранного документа: 0002509228
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9fb

Диафрагменный насос

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования для космических летательных аппаратов. Насос включает мембранную головку с двумя полостями, образованными мембраной с корпусом и крышкой, между фланцами которых закреплен край мембраны, а также...
Тип: Изобретение
Номер охранного документа: 0002509230
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa15

Термокомпрессионное устройство

Изобретение относится к холодильной технике. Термокомпрессионное устройство содержит источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в...
Тип: Изобретение
Номер охранного документа: 0002509256
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa16

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки...
Тип: Изобретение
Номер охранного документа: 0002509257
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.abcc

Способ заправки рабочим телом гидравлической магистрали замкнутого жидкостного контура, снабженной гидропневматическим компенсатором объемного расширения рабочего тела, и устройство для его осуществления

Группа изобретений относится к системам терморегулирования (СТР), преимущественно, космических аппаратов, может быть использована при их подготовке к летной эксплуатации, а также в других областях. В предлагаемом способе перед заполнением отвакуумированной гидравлической магистрали рабочим...
Тип: Изобретение
Номер охранного документа: 0002509695
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b3f7

Дублированный электронасосный агрегат

Заявленный дублированный электронасосный агрегат относится к машиностроению и может быть использован в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит сборный корпус, установленные в корпусе с его противоположных концов два...
Тип: Изобретение
Номер охранного документа: 0002511788
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b44e

Жидкостно-газовый реактивный двигатель

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и...
Тип: Изобретение
Номер охранного документа: 0002511877
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bce5

Способ измерения электрического сопротивления изоляции между группой объединенных контактов и отдельным контактом и устройство его реализации

Изобретение относится к области электроизмерительной техники, в частности к автоматизированным системам контроля электрического сопротивления и прочности изоляции, и может быть использовано при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002514096
Дата охранного документа: 27.04.2014
Showing 51-60 of 323 items.
20.01.2014
№216.012.993e

Плавильная печь установки для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначено для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002504929
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9a8e

Механизм коленного шарнира

Изобретение относится к протезированию нижних конечностей. Механизм коленного шарнира содержит верхнюю опорную головку с креплением гильзы бедра, нижний опорный кронштейн с креплением трубки голени, переходное кинематическое звено, по меньшей мере две оси вращения, а также голенно-откидное...
Тип: Изобретение
Номер охранного документа: 0002505272
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b4d

Космическое зубило (варианты)

Изобретение относится к космической технике, в частности к ручным инструментам, используемым космонавтом, снаряженным в скафандр, в условиях невесомости при выполнении технологических операций в процессе внекорабельной деятельности. Зубило для обработки материала в условиях космического...
Тип: Изобретение
Номер охранного документа: 0002505463
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f37

Узел крепления двух объектов

Изобретение относится к узлам крепления компонентов конструкции, преимущественно для крепления космических объектов при внекорабельной деятельности, и направлено на обеспечение исключения потерь крепежных элементов, а также обеспечение стопорения крепежного элемента при динамических нагрузках и...
Тип: Изобретение
Номер охранного документа: 0002506467
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a6d0

Установка для электролиза воды под давлением и способ ее эксплуатации

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и...
Тип: Изобретение
Номер охранного документа: 0002508419
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a708

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в составе систем терморегулирования изделий космической техники. Осевой вентилятор содержит корпус, спрямляющий аппарат в виде втулки с лопатками, размещенную внутри втулки гильзу с закрепленным в ней электродвигателем и рабочим колесом, а...
Тип: Изобретение
Номер охранного документа: 0002508475
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a71e

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, выполненным в виде теплоизолированной...
Тип: Изобретение
Номер охранного документа: 0002508497
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9f9

Модель стационарного плазменного двигателя

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры...
Тип: Изобретение
Номер охранного документа: 0002509228
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9fb

Диафрагменный насос

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования для космических летательных аппаратов. Насос включает мембранную головку с двумя полостями, образованными мембраной с корпусом и крышкой, между фланцами которых закреплен край мембраны, а также...
Тип: Изобретение
Номер охранного документа: 0002509230
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa15

Термокомпрессионное устройство

Изобретение относится к холодильной технике. Термокомпрессионное устройство содержит источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в...
Тип: Изобретение
Номер охранного документа: 0002509256
Дата охранного документа: 10.03.2014
+ добавить свой РИД